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Abstract—This paper proposes a fast and robust method
for electroluminescence image preprocessing, where lens and
perspective distortions are corrected, and individual cells in the
module are detected. Our approach works with low-resolution
(640 × 512 pixels) images, uses an image-to-image translation
neural network, and leverages the geometric properties of a
photovoltaic module. The fast computational speed of the neural
network allows us to complete image analysis in under 0.5
seconds, which is ten times faster than currently published
methods. In addition, the geometry-based postprocessing makes
our approach robust to small misdetections in the neural network
output.

Index Terms—electroluminescence, pix2pix neural network,
distortion correction

I. INTRODUCTION

The International Energy Agency (IEA) forecasts that solar
energy will have at least 27% of the global share of energy
production by 2050 [1]. With the increasing photovoltaic (PV)
production capacity, there is a growing demand for monitoring
and early-fault detection to minimize PV plant losses.

Time series data of inverters and strings may indicate a
potential fault; however, for a thorough investigation, spatially-
resolved measurements (imaging) provide a deeper under-
standing of the module’s health and allows for diagnosing
faults and defects, which is important for warranty or insurance
claims.

With the increase in the installed PV capacity and the
emergence of automated drone-based measurements, fast and
real-time image processing algorithms for module and cell
detection will become crucial for automated plant inspections.

In particular, camera and perspective distortion corrections
and module and cell detection are essential routines for
processing in-field-collected images. These algorithms are
important as these processing steps are always required and
applied before other analysis methods are used.

Previous studies of such algorithms are based on a series of
image-processing filters. First, the original image undergoes a
series of transformations, amplifying PV module characteris-
tics such as grid lines and busbars. Those characteristics are
then used to correct for lens and perspective distortions and
detect individual cells. Sovetkin et al. [2] use Hough Transform
to find short pieces of straight lines, followed by robust linear
regression predicting the slope change of those lines hence
estimating the parameters of the perspective distortion. Deitsch
et al. [3] use tensor voting to amplify the line features that

point in a similar direction and subpixel-accuracy routine to
compute the location of cell corners. Kölblin et al. [4] detect
cell gaps using an iterative linear Hough transform applied on
an adaptive locally thresholded image.

This paper replaces image-processing filters with a trained
image-to-image translation neural network, significantly re-
ducing the runtime. Furthermore, we leverage the typical PV
module’s geometrical properties to overcome misdetections in
the neural network and improve the algorithm’s robustness.

II. METHODOLOGY

Our image correction approach consists of four steps. In
the first step, we apply the trained image-to-image neural
network that takes as input the EL image and outputs a binary
image of a cell grid (see Section II-B and Figure 2). This
grid hints at the location of individual cells, and the neural
network is trained on the data obtained from the previously
published method (Section II-A). In the second step, we apply
several routines that rank cell corners and the corresponding
cell locations within the module (Section II-C). The ranking
of the cells corresponds to the quality of detection. In the third
step, the accuracy of the cell corner coordinates is improved
with a subpixel-accuracy method (Section II-D). Lastly, we
use the best cell corners to either estimate the lens distortion
parameters or correct the perspective distortion (Section II-E).

The flowchart in Figure 1 illustrates our approach pipeline.
The original image can be used either to accumulate informa-
tion to estimate the camera distortion matrix or to estimate
homography and extract individual cell images.

A. Data

We develop our methods using the daylight electrolumi-
nescence (EL) images collected with the DaySy system of
Solarzentrum Stuttgart, GmbH [5]. We use a low-resolution
InGaAs sensor with a 640× 512 pixels resolution. Our study
uses data from several commercial PV fields in Germany
containing several types of c-Si modules. Figure 2 (top) shows
an example of an EL image.

We utilize the methods proposed in [4] to generate training
data, which works well with our low-resolution images. First,
we generate a binary grid image for every EL image using the
computed cell data (see Figure 2, bottom). Then, we manually
clear the training dataset, removing faulty images. For this
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Fig. 1. A flowchart describing our approach pipeline. The original image is processed by an image-to-image neural network (I2INN, Section II-B). The
graph-geometric analysis (GGA) is applied to rank the cell corner quality (Section II-C). The accuracy of the node coordinates is improved with the subpixel-
accuracy method (Section II-D). The nodes resulting node coordinates are then used to estimate homography or a camera matrix (Section II-E)

Fig. 2. Above: an EL image with 640×512 pixels resolution. Below: output
of the neural network

paper, we use a sample 1800 number of modules to train the
neural network.

B. Image-to-image neural network (I2INN)

We use the Pix2Pix [6] neural network for the image-to-
image neural network (I2INN). First, we prepared a training
dataset discussed in Section II-A. Then, the training images
are augmented using a random perspective transformation,
shift, symmetry reflection, contrast scaling, and random noise.
Lastly, the resulting image is resized to have a 256×256 pixels
resolution. From 1800 module images, we generate a train-
ing dataset with 126000 images. The training uses NVIDIA

Fig. 3. An example of a faulty output of the neural network. The method is
applied to an out-of-sample image of a half-cell PV module

GeForce GTX 970 graphic card for 20 epochs. In the Pix2Pix
architecture, we experimented with several different generators
and discriminators, with all networks yielding similar results.

The output of an I2INN is prone to small misidentification
especially applied to new module types or modules with severe
defects. For example, some grid lines may not be detected,
or several cells may be merged to one area into the grid
image (see Figure 3). Therefore, postprocessing is required
to improve the robustness of the method.

C. Graph geometric analysis (GGA)

This paper utilizes the geometrical properties of the PV
module structure to discover any potential misidentification
from the neural network. Geometrically speaking, we expect
a binary grid to consist of a grid of distorted rectangles,
where each inner rectangle has precisely eight neighbors
sharing a vertex, every rectangle on the module border has
five neighbors, and every corner cell has three neighbors.

To analyze the structure of the binary grid, we focus on
its graph-theoretic properties. To this end, we first apply
the image thinning operator. Then, the resulting image can
be treated as a pixel graph P , where nodes of the graph
are non-zero pixels, and there is an edge between nodes if
two pixels are neighbors. We compute pixel graph using the
pixel_graph routine in skimage [7].



Fig. 4. An EL image with graph S (green nodes and edges) and graph S⋆

(red colour triangles with dashed edges)

The number of nodes in graph P can be further reduced,
as most nodes have degree two with both edges oriented in
the same direction. By applying a version of the breath-first-
search algorithm, we obtain a weighted graph S, where every
node has a degree of at least 3, and the weight of each edge
corresponds to the length of the path connecting two nodes in
the original graph P . We remark that the nodes of graph S
are not a subset of graph P , as we average the coordinates of
closely located nodes in P with a degree of at least 3. Such
averaging guarantees that all our edges do not intersect one
another, and graph S remains planar (with pixel coordinates
being an embedding).

Further, since graph S is planar, the dual graph S⋆ is well-
defined. Recall that the dual graph’s nodes are the faces of the
original graph and an edge in S⋆ connects two faces if they
have a common edge in S. The dual graph is beneficial to us
as it captures all the necessary geometric structures about the
grid. Figure 4 depicts a module image and the corresponding
graph S (green dots connected with lines) and dual graph S⋆

(red triangles connected with dashed lines).
We use a version of the depth-first-search algorithm to

compute the dual graph S⋆. During the computation, we
calculate various geometric quantities, such as the area of each
face, circumference, minimal enclosing parallelogram, its edge
ratio and area. We compute minimal enclosing parallelograms
using the algorithm from [8].

The depth-first search algorithm identifies a face in graph S
by walking around this face in a counter-clockwise direction.
Apart from individual cell faces, there are outer faces when we
walk around the module boundary in the clockwise direction.
We define the area of the outer face to be a negative value,
which equals to the module’s area. We select the largest
component when multiple modules are in a single image.

To avoid problems with the I2INN output inaccuracies (such
as shown in Figure 3), we introduce a ranking of the nodes of
the dual graph. This ranking aims to select the best faces with
respect to some heuristic rule. We use geometric characteristics
of the graph S faces and compare those values with the values

Fig. 5. Best points (red) are used to either the estimate camera matrix or
correct homography (need at least 4 points)

of its neighbors. Our heuristic is based on the fact that in the
PV module all cells are identical and similar in a distorted
image.

To this end, every face in graph S⋆ comes with a set of
qualitative characteristics vi ∈ Rd. Then, for each face i ∈ S⋆,
we calculate the Mahalanobis distance dM to the neighboring
faces N(i) ⊂ S⋆ sharing a vertex with i:

wi := {dM (vi, vj)}j∈N(i), i ∈ S⋆,

where
dM (x, y) :=

√
(x− y)TΣ−1(x− y).

and the covariance matrix Σ is estimated using a set of training
images.

In our current implementation, our vector vi is three-
dimensional and consists of the area of the face (normalized
by the dimension of the image), the area ratio between the
face and the area of the minimal enclosing parallelogram, and
the ratio of the sides of the parallelogram.

A q-quantile, w(q)
i ∈ R, i ∈ S⋆ (q > 50%), is computed on

a sample of those distances. This quantile demonstrates how
much face i differs from most of its neighbors. Note, here
we consider two faces are neighbors when they share at least
one node (i.e., each face inside a module has eight neighbors).
We expect w(q)

i to be small if most neighbors are close in its
characteristic to the face i ∈ S⋆. The ranking of faces is then
performed according to the ordering of w(q)

i , i ∈ S⋆.
We select the first half of the ordered list of faces. Then,

the selected faces are reordered so that the first face has
the highest rank; the second face is furthest away from the
first, and so on. Such a strategy allows the distribution of the
selected points throughout the image, improving homography
estimation. Figure 5 demonstrates an example of selected
faces.

Additionally, the dual graph determines the module square
lattice coordinates. For that, we choose any node i ∈ S⋆

with degree 4 and assign to this face a square lattice co-
ordinate (0, 0). The nodes below and above the initial face



get coordinates (0,−1) and (0, 1), respectively, nodes on the
left and the right get coordinates (−1, 0) and (1, 0). Walking
over the complete grid allows us to determine a square lattice
coordinate for each node in S⋆ with degree 4. Furthermore,
the square lattice coordinates’ range determines the detected
module’s size.

D. Subpixel accuracy correction (SPA)

The coordinate of the discovered nodes is accurate up to a
few pixels. Improving the accuracy is beneficial for the camera
distortion matrix and homography estimation. Therefore in the
last step, we apply a subpixel-accuracy coordinate correction
method, a procedure similar to the one used in [3].

To this end, for each node, we sample the original EL image
in the direction of the edge. The image is then reduced to a
vector, where each coordinate equals the sum of a column in
the sampled image. Figure 6 shows the resulting vector with a
red line. Since the image is sampled towards the direction of
the graph S edge, the resulting vector is expected to contain
a single peak corresponding to the cell border in the module.
The x-axis is given relative to the original node coordinate.

To estimate the location of the shift, we use the following
parametric model:

m(x;A,B, µ, σ) = A+B exp

(
(x− µ)2

σ2

)
. (1)

where parameter µ describes the desired shift value.
Unlike the subpixel-accuracy routine in [3], model (1)

is a shifted Gaussian bell; hence fast Gaussian model fits
like [9] are inapplicable in our scenario. Therefore, we rely
on a generic curve-fitting method based on the trust-region
optimization method [10]. We use the implementation from
curve_fit in the scipy library [11]. The blue line in
Figure 6 shows an example of the model fit.

Among the parameters of the model (1), the σ and its
variance of the estimator can be utilized to identify prob-
lematic fits. Namely, we ignore any nodes with σ2 > 0
and Var(σ̂2) > 10. Such thresholding allows ignoring curves
where peaks are not prominent or, in the scenario when a dark
cell makes the bell asymmetric.

Optimization is performed twice for each node: in vertical
and horizontal directions. The resulting parameters µ and the
direction of the edges define the correction shift vector, with
which the node’s coordinate is adjusted.

E. Camera and homography corrections

The resulting cell corner and square lattice coordinates
are used to estimate the camera matrix and perform a lens
distortion correction or image homography. In addition, the
square lattice coordinates allow us to determine the number
of rows and columns in the module and extract those cells
according to the square lattice grid.

For camera calibration and homography estimation, we use
routines implemented in the OpenCV library [12]. Namely,
calibrateCamera [13] and findHomography. The
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Fig. 6. Subpixel-accuracy coordinate correction method to improve point
locations. Sample average pixel intensity of the original image in the direction
on graph edges (red) and fit a parametric model (blue)

Fig. 7. Corrected image

camera matrix is estimated from identified coordinates from
several images.

Lastly, since we use only a subset of good nodes for
estimating homography, we can verify the detection with the
remaining nodes. Namely, we apply the corresponding homog-
raphy transformation and compute the root-mean-square error
(RMSE) with the excepted square lattice coordinates. If the
RMSE is above a chosen value, we report an error for the
given image.

III. RESULTS

Figure 7 depicts the desired corrected image for the module
in Figure 2. Here we selected each cell to have a dimension
of 100 × 100 pixels as those modules have square cells. The
resulting image dimension equals 1200× 600. We can easily
extract individual cell images by shifting a window within an
image.

Several factors contribute to the robustness of our method.
Firstly, the ability for neural networks to generalize to new
data, our I2INN step can be applied to new types of modules.
Furthermore, graph-based geometric property analysis allows
filtering potential misdetections in the grid images. Again,
our approach can handle images with multiple modules, as
all our routines are applied for each component. Moreover,
the thresholding of covariances of the estimator in the SPA
routines allows us to ignore nodes where cells are defective.



TABLE I
I2INN: TIME REQUIRED DEPENDS ON THE DEVICE

device time
gpu:jetson 70ms
cpu:jetson 400ms
gpu:nvidia gv 102 5ms
cpu:intel xeon w-2123 70ms

TABLE II
OTHER STEP: RUNS ON 1-CPU PER IMAGE, SUBPIXEL CORRECTION PER

NODE (MEASURED ON INTEL XEON W-2123). IO STANDS FOR
INPUT/OUTPUT IMAGE OPERATION

procedure time
IO 60ms
GGA 89ms
SPA 7ms
lens correction 5ms
homography estimation 4ms

Lastly, even after all those steps, the module is not accurately
detected; computation RMSE with all the nodes allows for
identifying such failures.

We benchmark our pipeline on several devices to demon-
strate our approach’s computational performance. First, we use
the NVIDIA Jetson machine, a lightweight computer with
a GPU module for potential in-field applications. Further,
we use the Intel Xeon W-2123-based machine for large-
scale processing with the NVIDIA GV 102 graphic card. For
all results, we process images in maximum batches, device
memory permits.

Table I compares the performance of the I2INN step for
different devices. Here, we have an option of running the
routine on CPU or GPU devices for each of the machines. On
the Jetson, we used batches of size 16; on a larger machine,
we used batches of size 256.

Table II shows the running time of the GGA step. This step
has no parallel implementation; hence each image is processed
on a single CPU. Here the subpixel correction routine timing
is given per node. The homography requires calling routine
at least four times, whereas, for the camera distortion matrix
computation, we need 20–30 nodes.

The complete pipeline can be computed on multiple CPUs
for processing many images in batches. Figure 8 demonstrates
how our parallel implementation of batch processing deviates
from the ideal linear scaling measured on the Intel Xeon W-
2123 machine. Table III provides timings for the complete
pipeline on small and large machines. The memory require-
ment of the pipeline depends on the batch size. For instance,
a batch size 256 requires up to 5.6GB of memory on an Intel
Xeon W-2123 machine.

TABLE III
COMPLETE PIPELINE USING 4 CPU

machine time/image
intel xeon + gpu 125ms/image
nvidia jetson 527ms/image
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Fig. 8. Comparison of pipeline speedup with the theoretical one (red line).
Benchmark using Intel Xeon W-2123

These performance benchmark values demonstrate a sig-
nificant improvement upon the previously published model,
for which the running time ranges from 6 s [4] to 360 s
[3, 2] per image. The performance of our method can be
further improved by implementing graph algorithms in a fast-
compiled language (the current implementation is in Python),
and the input/output can be further optimized. However, we
expect a running time to be at most 60ms per image.

To estimate the accuracy of the proposed approach, we
compute the RMSE values for the camera calibration and
homography correction routines. First, we estimate the camera
distortion matrix with the iterative aruco-based calibration
method suitable for low-resolution images [14]. Then we
calculate the camera distortion matrix with our approach based
on the 320 EL images. Then we project every pixel coordinate
of the image using those two camera matrices and compute
an RMSE of 2.9 pixels between the two projections.

For homography accuracy, we compare the cell coordinates
between our method and the results of the method published
in [4]. Based on the data from 1500 images, we obtained an
RMSE of 3.2 pixels. We remark that the method in [4] does
not perform subpixel-accuracy coordinate correction, hence
neither of the methods can be considered as ground truth.
Figure 9 shows that visually, the SPA routine gives a more
accurate position of the cell coordinate (red points) compared
to the green points obtained from [4].

We remark that the proposed approach is not restricted to EL
images, for example, can be applied to drone-based infrared
images or EL for complete module identification. Figure 10
depicts individual module identification in low-resolution IR
images, where the camera distortion matrix is estimated from
a sample of 13 images.

IV. SUMMARY

Image data volumes will grow with the emergence of drone-
based automatic PV plant inspection. Therefore, automatizing
module inspection and defect detection require fast and reli-
able image processing algorithms.



Fig. 9. Comparison of cell corners between [4] (green points) and our method
(red points). The SPA in our approach visually improves the node estimation

Fig. 10. The approach can be applied to IR/EL drone-based images. Image
source: Aerial PV Inspection GmbH

This paper proposed a method for camera and homography
distortion corrections and cell extraction in EL images. By
leveraging the computational speed of neural networks and
the geometric properties of a PV module, we improved the
running times of such preprocessing algorithms by a factor of
10. Generally, our approach applies to any images containing
regular patterns.
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