001024401 001__ 1024401
001024401 005__ 20250204113820.0
001024401 0247_ $$2doi$$a10.1016/j.trc.2024.104584
001024401 0247_ $$2ISSN$$a0968-090X
001024401 0247_ $$2ISSN$$a1879-2359
001024401 0247_ $$2WOS$$aWOS:001218999200001
001024401 037__ $$aFZJ-2024-02144
001024401 041__ $$aEnglish
001024401 082__ $$a380
001024401 1001_ $$0P:(DE-HGF)0$$aXu, Qiancheng$$b0$$eCorresponding author
001024401 245__ $$aAnalysis and modeling of detours in pedestrian operational navigation
001024401 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001024401 3367_ $$2DRIVER$$aarticle
001024401 3367_ $$2DataCite$$aOutput Types/Journal article
001024401 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712663858_18043
001024401 3367_ $$2BibTeX$$aARTICLE
001024401 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024401 3367_ $$00$$2EndNote$$aJournal Article
001024401 520__ $$aTraditional operational navigation models for pedestrian dynamics demonstrate limitations in reproducing the circle antipode experiment, an artificially designed multi-directional flow scenario. In the experiment, pedestrians take detours to avoid the congestion caused by others taking straight paths. Although the pedestrian detour action is commonly incorporated into the route choice model, it frequently goes unaddressed in the operational navigation model, resulting in a disparity between simulation outcomes and empirical observations. To reveal the mechanism underlying pedestrian detours in the circle antipode experiment, this study employed the K-means clustering method rather than using a threshold approach to categorize the experimental participants into groups taking direct or detour routes. Following this, a heuristic function is formulated to determine the desired direction of agents in a collision-free velocity model, reflecting the trade-off between shorter routes and faster speeds. The parameter of the proposed function is calibrated using the proportion of agents choosing detours, where the route types of agents are identified by a classifier based on the random forest. Compared to two traditional models that do not consider detours, the proposed model can more realistically reproduce the trajectory distributions, the travel time, the route length, and the time series of relevant variables in the circle antipode experiment. The study offers insights into employing machine learning methodologies for analyzing pedestrian flow, validating pedestrian dynamics models, and providing an accurate simulation tool for designing transportation facilities and crowd management at large events.
001024401 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001024401 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024401 7001_ $$0P:(DE-HGF)0$$aYuan, Zhilu$$b1
001024401 7001_ $$0P:(DE-HGF)0$$aGuo, Renzhong$$b2
001024401 7001_ $$0P:(DE-HGF)0$$aHe, Biao$$b3
001024401 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b4$$ufzj
001024401 773__ $$0PERI:(DE-600)2015891-9$$a10.1016/j.trc.2024.104584$$gVol. 162, p. 104584 -$$p104584$$tTransportation research / Part C$$v162$$x0968-090X$$y2024
001024401 8564_ $$uhttps://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.pdf$$yRestricted
001024401 8564_ $$uhttps://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.gif?subformat=icon$$xicon$$yRestricted
001024401 8564_ $$uhttps://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024401 8564_ $$uhttps://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024401 8564_ $$uhttps://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024401 909CO $$ooai:juser.fz-juelich.de:1024401$$pVDB
001024401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b4$$kFZJ
001024401 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001024401 9141_ $$y2024
001024401 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001024401 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001024401 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
001024401 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001024401 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001024401 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001024401 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001024401 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001024401 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-20
001024401 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001024401 920__ $$lyes
001024401 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001024401 980__ $$ajournal
001024401 980__ $$aVDB
001024401 980__ $$aI:(DE-Juel1)IAS-7-20180321
001024401 980__ $$aUNRESTRICTED