001     1024401
005     20250204113820.0
024 7 _ |a 10.1016/j.trc.2024.104584
|2 doi
024 7 _ |a 0968-090X
|2 ISSN
024 7 _ |a 1879-2359
|2 ISSN
024 7 _ |a WOS:001218999200001
|2 WOS
037 _ _ |a FZJ-2024-02144
041 _ _ |a English
082 _ _ |a 380
100 1 _ |a Xu, Qiancheng
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Analysis and modeling of detours in pedestrian operational navigation
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712663858_18043
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Traditional operational navigation models for pedestrian dynamics demonstrate limitations in reproducing the circle antipode experiment, an artificially designed multi-directional flow scenario. In the experiment, pedestrians take detours to avoid the congestion caused by others taking straight paths. Although the pedestrian detour action is commonly incorporated into the route choice model, it frequently goes unaddressed in the operational navigation model, resulting in a disparity between simulation outcomes and empirical observations. To reveal the mechanism underlying pedestrian detours in the circle antipode experiment, this study employed the K-means clustering method rather than using a threshold approach to categorize the experimental participants into groups taking direct or detour routes. Following this, a heuristic function is formulated to determine the desired direction of agents in a collision-free velocity model, reflecting the trade-off between shorter routes and faster speeds. The parameter of the proposed function is calibrated using the proportion of agents choosing detours, where the route types of agents are identified by a classifier based on the random forest. Compared to two traditional models that do not consider detours, the proposed model can more realistically reproduce the trajectory distributions, the travel time, the route length, and the time series of relevant variables in the circle antipode experiment. The study offers insights into employing machine learning methodologies for analyzing pedestrian flow, validating pedestrian dynamics models, and providing an accurate simulation tool for designing transportation facilities and crowd management at large events.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yuan, Zhilu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Guo, Renzhong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a He, Biao
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 4
|u fzj
773 _ _ |a 10.1016/j.trc.2024.104584
|g Vol. 162, p. 104584 -
|0 PERI:(DE-600)2015891-9
|p 104584
|t Transportation research / Part C
|v 162
|y 2024
|x 0968-090X
856 4 _ |u https://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024401/files/1-s2.0-S0968090X24001050-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1024401
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132077
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21