001     1024403
005     20250204113820.0
024 7 _ |a 10.3390/fluids9040084
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02146
|2 datacite_doi
024 7 _ |a WOS:001211140400001
|2 WOS
037 _ _ |a FZJ-2024-02146
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Hassanian, Reza
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Turbulent Flow Prediction-Simulation: Strained Flow with Initial Isotropic Condition Using a GRU Model Trained by an Experimental Lagrangian Framework, with Emphasis on Hyperparameter Optimization
260 _ _ |a Belgrade
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712138240_21538
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The paper is available open-access on the publisher website.
520 _ _ |a This study presents a novel approach to using a gated recurrent unit (GRU) model, a deep neural network, to predict turbulent flows in a Lagrangian framework. The emerging velocity field is predicted based on experimental data from a strained turbulent flow, which was initially a nearly homogeneous isotropic turbulent flow at the measurement area. The distorted turbulent flow has a Taylor microscale Reynolds number in the range of 100 < Re_\lamda < 152 before creating the strain and is strained with a mean strain rate of 4 s^−1 in the Y direction. The measurement is conducted in the presence of gravity consequent to the actual condition, an effect that is usually neglected and has not been investigated in most numerical studies. A Lagrangian particle tracking technique is used to extract the flow characterizations. It is used to assess the capability of the GRU model to forecast the unknown turbulent flow pattern affected by distortion and gravity using spatiotemporal input data. Using the flow track’s location (spatial) and time (temporal) highlights the model’s superiority. The suggested approach provides the possibility to predict the emerging pattern of the strained turbulent flow properties observed in many natural and artificial phenomena. In order to optimize the consumed computing, hyperparameter optimization (HPO) is used to improve the GRU model performance by 14–20%. Model training and inference run on the high-performance computing (HPC) JUWELS-BOOSTER and DEEP-DAM systems at the Jülich Supercomputing Centre, and the code speed-up on these machines is measured. The proposed model produces accurate predictions for turbulent flows in the Lagrangian view with a mean absolute error (MAE) of 0.001 and an R^2 score of 0.993.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Aach, Marcel
|0 P:(DE-Juel1)180916
|b 1
|u fzj
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 2
|u fzj
700 1 _ |a Helgadóttir, Ásdís
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 4
|u fzj
773 _ _ |a 10.3390/fluids9040084
|g Vol. 9, no. 4, p. 84 -
|0 PERI:(DE-600)2882362-X
|n 4
|p 84
|t Fluids
|v 9
|y 2024
|x 2311-5521
856 4 _ |u https://www.mdpi.com/2311-5521/9/4/84
856 4 _ |u https://juser.fz-juelich.de/record/1024403/files/fluids-09-00084.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024403/files/fluids-09-00084.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024403/files/fluids-09-00084.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024403/files/fluids-09-00084.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024403/files/fluids-09-00084.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1024403
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180916
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:28:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:28:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:28:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21