001024405 001__ 1024405
001024405 005__ 20240501205648.0
001024405 037__ $$aFZJ-2024-02148
001024405 041__ $$aEnglish
001024405 1001_ $$0P:(DE-Juel1)196970$$aKosma, Adamantia$$b0$$eCorresponding author
001024405 1112_ $$aSpring meeting of German physical society$$cBerlin$$d2024-03-17 - 2024-03-22$$gDPG 2024$$wGermany
001024405 245__ $$aWork function engineering in superconducting Ir/Nb(110) films
001024405 260__ $$c2024
001024405 3367_ $$033$$2EndNote$$aConference Paper
001024405 3367_ $$2DataCite$$aOther
001024405 3367_ $$2BibTeX$$aINPROCEEDINGS
001024405 3367_ $$2DRIVER$$aconferenceObject
001024405 3367_ $$2ORCID$$aLECTURE_SPEECH
001024405 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1714552952_3667$$xAfter Call
001024405 520__ $$aThe topological superconducting hybrid structures have been attracting considerable research interest in recent years, as they are promising candidates for topologically protected qubits. Because of this, a substantial demand for appropriate superconducting substrates has been created. In our study we explore the superconducting properties of Ir/Nb(110) films. Our focus is on the investigation of the change in the work function and the size of the proximity-induced superconducting gap of Ir overlayers deposited on Nb(110). The work function plays a crucial role in determining the behavior of electrons at the superconducting surface, thereby influencing the charge transport. In the specific context of superconductor hybrid structures for Majoranas, the target is to effectively manage the work function mismatch while maintaining a robust proximity effect through the overlayer. This approach will also provide valuable information for studying the proximity effect in a topological insulator/superconductor(TI/SC) system. Our findings are based on first-principles calculations using the full-potential Korringa-Kohn-Rostoker Green function method and its Kohn-Sham Bogoliubov-de Gennes (KS-BdG) extension to describe superconducting heterostructures [1].We thank the ML4Q (EXC 2004/1 - 390534769) for funding.[1] P. Rüßmann, and S. Blügel, Phys. Rev. B 105, 125143 (2022).
001024405 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001024405 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001024405 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1
001024405 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b2
001024405 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/hl/session/31/contribution/2
001024405 909CO $$ooai:juser.fz-juelich.de:1024405$$pVDB
001024405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196970$$aForschungszentrum Jülich$$b0$$kFZJ
001024405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
001024405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b2$$kFZJ
001024405 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001024405 9141_ $$y2024
001024405 920__ $$lyes
001024405 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001024405 980__ $$aconf
001024405 980__ $$aVDB
001024405 980__ $$aI:(DE-Juel1)PGI-1-20110106
001024405 980__ $$aUNRESTRICTED