001     1024405
005     20240501205648.0
037 _ _ |a FZJ-2024-02148
041 _ _ |a English
100 1 _ |a Kosma, Adamantia
|0 P:(DE-Juel1)196970
|b 0
|e Corresponding author
111 2 _ |a Spring meeting of German physical society
|g DPG 2024
|c Berlin
|d 2024-03-17 - 2024-03-22
|w Germany
245 _ _ |a Work function engineering in superconducting Ir/Nb(110) films
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1714552952_3667
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The topological superconducting hybrid structures have been attracting considerable research interest in recent years, as they are promising candidates for topologically protected qubits. Because of this, a substantial demand for appropriate superconducting substrates has been created. In our study we explore the superconducting properties of Ir/Nb(110) films. Our focus is on the investigation of the change in the work function and the size of the proximity-induced superconducting gap of Ir overlayers deposited on Nb(110). The work function plays a crucial role in determining the behavior of electrons at the superconducting surface, thereby influencing the charge transport. In the specific context of superconductor hybrid structures for Majoranas, the target is to effectively manage the work function mismatch while maintaining a robust proximity effect through the overlayer. This approach will also provide valuable information for studying the proximity effect in a topological insulator/superconductor(TI/SC) system. Our findings are based on first-principles calculations using the full-potential Korringa-Kohn-Rostoker Green function method and its Kohn-Sham Bogoliubov-de Gennes (KS-BdG) extension to describe superconducting heterostructures [1].We thank the ML4Q (EXC 2004/1 - 390534769) for funding.[1] P. Rüßmann, and S. Blügel, Phys. Rev. B 105, 125143 (2022).
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)
|0 G:(GEPRIS)390534769
|c 390534769
|x 1
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 1
700 1 _ |a Rüssmann, Philipp
|0 P:(DE-Juel1)157882
|b 2
856 4 _ |u https://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/hl/session/31/contribution/2
909 C O |o oai:juser.fz-juelich.de:1024405
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196970
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157882
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21