001024408 001__ 1024408
001024408 005__ 20240501205648.0
001024408 037__ $$aFZJ-2024-02151
001024408 1001_ $$0P:(DE-Juel1)196970$$aKosma, Adamantia$$b0$$eCorresponding author
001024408 1112_ $$aSpring meeting of the German physical society$$cBerlin$$d2024-03-17 - 2024-03-22$$gDPG 2024$$wGermany
001024408 245__ $$aAb-initio study of the topological Hall effect in Pd/Fe/Ir(111)
001024408 260__ $$c2024
001024408 3367_ $$033$$2EndNote$$aConference Paper
001024408 3367_ $$2DataCite$$aOther
001024408 3367_ $$2BibTeX$$aINPROCEEDINGS
001024408 3367_ $$2DRIVER$$aconferenceObject
001024408 3367_ $$2ORCID$$aLECTURE_SPEECH
001024408 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1714552969_11807$$xAfter Call
001024408 520__ $$aThis study comprises an ab-initio computational investigation of the topological Hall effect (THE) arising from magnetic skyrmions in thin film Pd/Fe/Ir(111)[1]. The research is motivated by the significance of electrically detecting magnetic skyrmions for spintronic applications. To achieve the formation of stable magnetic skyrmions in this system, we employ non-collinear spin-density-functional theory within the Korringa-Kohn-Rostoker (KKR) Green function method. The multiple scattering problem is solved using the full-potential relativistic KKR method [2], and subsequently, the spin-transport calculations are carried out using the Boltzmann formalism [3] to find the resistivity and the topological Hall angle. We investigate the influence of the skyrmion size on the Hall angle and explore the impact of additional electron scattering, modeled as random disorder broadening, on the THE. Our findings indicate a significant correlation between the THE and the degree of disorder in a sample.We thank the ML4Q (EXC 2004/1 - 390534769) for funding.[1] N. Romming et al., Science 341 6146 (2013).[2] JuDFTteam/JuKKR (2022). doi: 10.5281/zenodo.7284738[3] A. Kosma et al., Phys. Rev. B 102 144424 (2020).
001024408 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001024408 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001024408 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b1
001024408 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
001024408 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Phivos$$b3
001024408 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/ma/session/30/contribution/11
001024408 909CO $$ooai:juser.fz-juelich.de:1024408$$pVDB
001024408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196970$$aForschungszentrum Jülich$$b0$$kFZJ
001024408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b1$$kFZJ
001024408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001024408 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001024408 9141_ $$y2024
001024408 920__ $$lyes
001024408 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001024408 980__ $$aconf
001024408 980__ $$aVDB
001024408 980__ $$aI:(DE-Juel1)PGI-1-20110106
001024408 980__ $$aUNRESTRICTED