001024409 001__ 1024409
001024409 005__ 20240501205648.0
001024409 037__ $$aFZJ-2024-02152
001024409 1001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b0$$eCorresponding author
001024409 1112_ $$aSpring meeting of ther German physical society$$cBerlin$$d2024-03-17 - 2024-03-22$$gDPG 2024$$wGermany
001024409 245__ $$aInterorbital Cooper pairing at finite energies in Rashba surface states
001024409 260__ $$c2024
001024409 3367_ $$033$$2EndNote$$aConference Paper
001024409 3367_ $$2DataCite$$aOther
001024409 3367_ $$2BibTeX$$aINPROCEEDINGS
001024409 3367_ $$2DRIVER$$aconferenceObject
001024409 3367_ $$2ORCID$$aLECTURE_SPEECH
001024409 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1714555574_3375$$xAfter Call
001024409 520__ $$aMultiband effects in hybrid structures provide a rich playground for unconventional superconductivity. We combine two complementary approaches based on density-functional theory (DFT) [1] and effective low-energy model theory in order to investigate the proximity effect in a Rashba surface state in contact with an s-wave superconductor [2]. We discuss these synergistic approaches and combine the effective model and DFT analysis at the example of a Au/Al heterostructure. This allows us to predict finite-energy superconducting pairing due to the interplay of the Rashba surface state of Au, and hybridization with the electronic structure of superconducting Al. We investigate the nature of the induced superconducting pairing, and we quantify its mixed singlet-triplet character. Our findings demonstrate general recipes to explore real material systems that exhibit interorbital pairing away from the Fermi energy.This work was supported by the Bavarian Ministry of Economic Affairs, Regional Development and Energy and the ML4Q Cluster of Excellence (EXC 2004/1 - 390534769).[1] P. Rüßmann and S. Blügel, Phys. Rev. B 105 (2022) 125143.[2] P. Rüßmann et al., Phys. Rev. Research 5 (2023) 043181.
001024409 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001024409 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001024409 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/tt/session/36/contribution/1
001024409 909CO $$ooai:juser.fz-juelich.de:1024409$$pVDB
001024409 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b0$$kFZJ
001024409 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001024409 9141_ $$y2024
001024409 920__ $$lyes
001024409 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001024409 980__ $$aconf
001024409 980__ $$aVDB
001024409 980__ $$aI:(DE-Juel1)PGI-1-20110106
001024409 980__ $$aUNRESTRICTED