001024410 001__ 1024410
001024410 005__ 20240501205648.0
001024410 037__ $$aFZJ-2024-02153
001024410 1001_ $$0P:(DE-Juel1)186673$$aAntognini Silva, David$$b0$$eCorresponding author
001024410 1112_ $$aSpring meeting of the German physical society$$cBerlin$$d2024-03-17 - 2024-03-22$$gDPG 2024$$wGermany
001024410 245__ $$aFirst principles analysis of Gd nanostructures on superconducting Nb(110)
001024410 260__ $$c2024
001024410 3367_ $$033$$2EndNote$$aConference Paper
001024410 3367_ $$2DataCite$$aOther
001024410 3367_ $$2BibTeX$$aINPROCEEDINGS
001024410 3367_ $$2DRIVER$$aconferenceObject
001024410 3367_ $$2ORCID$$aLECTURE_SPEECH
001024410 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1714555589_3375$$xAfter Call
001024410 520__ $$aMaterials that combine magnetism, spin-orbit interaction and conventional s-wave superconductivity are a suitable platform to study Yu-Shiba-Rusinov (YSR) states [1-3] and Majorana zero modes (MZM) [4], that can be used as building blocks of fault-tolerant topological qubits.Recently, STM experiments for Gd chains on Nb(110) surface showed indication of MZMs at the ends of the chains [5]. To better understand the nature of those modes, we implemented the Bogoliubov-de Gennes (BdG) formalism in the juKKR impurity code [6] that allows the material-specific description of defects in superconductors from first principles, and applied it to Gd adatom nanostructures placed on the superconducting Nb(110) surface. We analyze the YSR states arising from the coupling of the magnetic Gd atoms and investigate their dependence on the geometry of the nanocluster and its magnetic ordering.This work was funded by the DFG through Germany’s Excellence Cluster ML4Q (EXC 2004/1 - 390534769).[1] L. Yu, Acta Physica Sinica 21 (1965) 75[2] H. Shiba, Prog. Theor. Phys. 40 (1968) 435[3] A. I. Rusinov, Sov. J. Exp. Theor. Phys. 29 (1969) 1101[4] Nadj-Perge et al., Science 346 (2014) 6209[5] Y. Wang et al., arXiv.2311.09742[6] https://iffgit.fz-juelich.de/kkr/jukkr
001024410 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001024410 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001024410 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b1
001024410 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
001024410 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/tt/session/66/contribution/3
001024410 909CO $$ooai:juser.fz-juelich.de:1024410$$pVDB
001024410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186673$$aForschungszentrum Jülich$$b0$$kFZJ
001024410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b1$$kFZJ
001024410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001024410 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001024410 9141_ $$y2024
001024410 920__ $$lyes
001024410 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001024410 980__ $$aconf
001024410 980__ $$aVDB
001024410 980__ $$aI:(DE-Juel1)PGI-1-20110106
001024410 980__ $$aUNRESTRICTED