| Home > Publications database > First principles analysis of Gd nanostructures on superconducting Nb(110) > print |
| 001 | 1024410 | ||
| 005 | 20240501205648.0 | ||
| 037 | _ | _ | |a FZJ-2024-02153 |
| 100 | 1 | _ | |a Antognini Silva, David |0 P:(DE-Juel1)186673 |b 0 |e Corresponding author |
| 111 | 2 | _ | |a Spring meeting of the German physical society |g DPG 2024 |c Berlin |d 2024-03-17 - 2024-03-22 |w Germany |
| 245 | _ | _ | |a First principles analysis of Gd nanostructures on superconducting Nb(110) |
| 260 | _ | _ | |c 2024 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1714555589_3375 |2 PUB:(DE-HGF) |x After Call |
| 520 | _ | _ | |a Materials that combine magnetism, spin-orbit interaction and conventional s-wave superconductivity are a suitable platform to study Yu-Shiba-Rusinov (YSR) states [1-3] and Majorana zero modes (MZM) [4], that can be used as building blocks of fault-tolerant topological qubits.Recently, STM experiments for Gd chains on Nb(110) surface showed indication of MZMs at the ends of the chains [5]. To better understand the nature of those modes, we implemented the Bogoliubov-de Gennes (BdG) formalism in the juKKR impurity code [6] that allows the material-specific description of defects in superconductors from first principles, and applied it to Gd adatom nanostructures placed on the superconducting Nb(110) surface. We analyze the YSR states arising from the coupling of the magnetic Gd atoms and investigate their dependence on the geometry of the nanocluster and its magnetic ordering.This work was funded by the DFG through Germany’s Excellence Cluster ML4Q (EXC 2004/1 - 390534769).[1] L. Yu, Acta Physica Sinica 21 (1965) 75[2] H. Shiba, Prog. Theor. Phys. 40 (1968) 435[3] A. I. Rusinov, Sov. J. Exp. Theor. Phys. 29 (1969) 1101[4] Nadj-Perge et al., Science 346 (2014) 6209[5] Y. Wang et al., arXiv.2311.09742[6] https://iffgit.fz-juelich.de/kkr/jukkr |
| 536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769) |0 G:(GEPRIS)390534769 |c 390534769 |x 1 |
| 700 | 1 | _ | |a Rüssmann, Philipp |0 P:(DE-Juel1)157882 |b 1 |
| 700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 2 |
| 856 | 4 | _ | |u https://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/tt/session/66/contribution/3 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1024410 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186673 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157882 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130548 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
| 980 | _ | _ | |a conf |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|