001024411 001__ 1024411
001024411 005__ 20240501205648.0
001024411 037__ $$aFZJ-2024-02154
001024411 1001_ $$0P:(DE-Juel1)197001$$aKlepetsanis, Ilias$$b0$$eCorresponding author
001024411 1112_ $$aSpring meeting of the German physical society$$cBerlin$$d2024-03-17 - 2024-03-22$$gDPG 2024$$wGermany
001024411 245__ $$aAb-initio investigation of Yu-Shiba-Rusinov states of 3d adatoms interacting with Rashba-split surface states
001024411 260__ $$c2024
001024411 3367_ $$033$$2EndNote$$aConference Paper
001024411 3367_ $$2DataCite$$aOther
001024411 3367_ $$2BibTeX$$aINPROCEEDINGS
001024411 3367_ $$2DRIVER$$aconferenceObject
001024411 3367_ $$2ORCID$$aLECTURE_SPEECH
001024411 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1714563036_3667$$xAfter Call
001024411 520__ $$aThe interplay between magnetism and superconductivity has long been under the scope of condensed matter physics research, as two seemingly competing phenomena of order. Here, we employ the Bogoliubov-de-Gennes full-potential relativistic Korringa-Kohn-Rostoker Green function method [1] to study Yu-Shiba-Rusinov states emerging when 3d magnetic adatoms are interfaced with different spacers deposited on Nb surfaces. These spacers are heavily investigated to introduce Rashba surface states and engineer the strength of spin-orbit coupling at the vicinity of a superconductor, which leads to unconventional superconducting pairing [2]. In particular, we explored the cases of (111) films of Cu, Ag, Au as well as BiAg2/Ag and BiCu2/Cu.We acknowledge funding by the DFG (SPP 2244; LO 1659/7-1; ML4Q Cluster of Excellence EXC 2004/1 – 390534769).[1] P. Rüßmann, S. Blügel, Phys. Rev. B 105 (2022) 125143[2] P. Rüßmann et al., Phys. Rev. Research 5 (2023) 043181
001024411 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001024411 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001024411 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b1
001024411 7001_ $$0P:(DE-HGF)0$$aWiebe, Jens$$b2
001024411 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b3
001024411 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/tt/session/66/contribution/5
001024411 909CO $$ooai:juser.fz-juelich.de:1024411$$pVDB
001024411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)197001$$aForschungszentrum Jülich$$b0$$kFZJ
001024411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b1$$kFZJ
001024411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b3$$kFZJ
001024411 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001024411 9141_ $$y2024
001024411 920__ $$lyes
001024411 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001024411 980__ $$aconf
001024411 980__ $$aVDB
001024411 980__ $$aI:(DE-Juel1)PGI-1-20110106
001024411 980__ $$aUNRESTRICTED