001024413 001__ 1024413
001024413 005__ 20240501205648.0
001024413 037__ $$aFZJ-2024-02156
001024413 041__ $$aEnglish
001024413 1001_ $$0P:(DE-Juel1)187560$$aHemmati, Mohammad$$b0$$eCorresponding author
001024413 1112_ $$aSpring meeting of the German physical society$$cBerlin$$d2024-03-17 - 2024-03-22$$gDPG 2024$$wGermany
001024413 245__ $$aControl of the superconducting pairing in the van der Waals superconductor NbSe2 via magnetic intercalation
001024413 260__ $$c2024
001024413 3367_ $$033$$2EndNote$$aConference Paper
001024413 3367_ $$2DataCite$$aOther
001024413 3367_ $$2BibTeX$$aINPROCEEDINGS
001024413 3367_ $$2DRIVER$$aconferenceObject
001024413 3367_ $$2ORCID$$aLECTURE_SPEECH
001024413 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1714552984_3667$$xAfter Call
001024413 520__ $$aWe investigate the superconducting properties of NbSe2 using first-principles calculations within the Korringa-Kohn-Rostoker Green function method, accompanied by a description of superconductivity via the Bogoliubov-de Gennes formalism [1]. The Coherent Potential Approximation (CPA) is employed to address the effects of magnetic transition-metal impurities on the electronic structure [2]. Adding low concentrations of randomly placed magnetic atoms inside the van der Waals gap of superconducting NbSe2 influences the superconducting order parameter before suppressing the superconductivity at larger impurity concentrations. This allows us to control the superconducting pairing and engineer the triplet order parameter in NbSe2 with varying concentration and chemical composition of magnetic the impurities.— This work was supported by the ML4Q Cluster of Excellence (EXC 2004/1 * 390534769).[1] P. Rüßmann and S. Blügel, Phys. Rev. B 105 (2022) 125143.[2] P. Rüßmann, D. Silva, M. Hemmati et al., Spintronics XVI (2023) 12656.
001024413 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001024413 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001024413 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1
001024413 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b2
001024413 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/tt/session/68/contribution/8
001024413 909CO $$ooai:juser.fz-juelich.de:1024413$$pVDB
001024413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187560$$aForschungszentrum Jülich$$b0$$kFZJ
001024413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
001024413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b2$$kFZJ
001024413 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001024413 9141_ $$y2024
001024413 920__ $$lyes
001024413 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001024413 980__ $$aconf
001024413 980__ $$aVDB
001024413 980__ $$aI:(DE-Juel1)PGI-1-20110106
001024413 980__ $$aUNRESTRICTED