001     1024415
005     20250204113821.0
024 7 _ |a 10.3390/atmos15040429
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02158
|2 datacite_doi
024 7 _ |a WOS:001210610500001
|2 WOS
037 _ _ |a FZJ-2024-02158
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Liao, Ye
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Tracking Carbon Dioxide with Lagrangian Transport Simulations: Case Study of Canadian Forest Fires in May 2021
260 _ _ |a Basel, Switzerland
|c 2024
|b MDPI AG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712212646_10981
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The large amounts of greenhouse gases, such as carbon dioxide, produced by severe forest fires not only seriously affect the ecosystems in the area where the fires occur but also cause a greenhouse effect that has a profound impact on the natural environment in other parts of the world. Numerical simulations of greenhouse gas transport processes are often affected by uncertainties in the location and timing of the emission sources and local meteorological conditions, and it is difficult to obtain accurate and credible predictions by combining remote sensing satellite data with given meteorological forecasts or reanalyses. To study the regional transport processes and impacts of greenhouse gases produced by sudden large-scale forest fires, this study applies the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC) to conduct forward simulations of the CO2 transport process of greenhouse gases emitted from forest fires in the central region of Saskatchewan, Canada, during the period of 17 May to 25 May 2021. The simulation results are validated with the Orbiting Carbon Observatory-2 Goddard Earth Observing System (OCO-2 GEOS) Level 3 daily gridded CO2 product over the study area. In order to leverage the high computational costs of the numerical simulations of the model, we implement the forward simulations on the Tianhe-2 supercomputer platform and the JUWELS HPC system, which greatly improves the computational efficiency through parallel computation and makes near-real-time predictions of atmospheric transport processes feasible.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Deng, Xuying
|0 0009-0005-5330-5144
|b 1
700 1 _ |a Huang, Mingming
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Liu, Mingzhao
|0 P:(DE-Juel1)187051
|b 3
700 1 _ |a Yi, Jia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 5
773 _ _ |a 10.3390/atmos15040429
|g Vol. 15, no. 4, p. 429 -
|0 PERI:(DE-600)2605928-9
|n 4
|p 429
|t Atmosphere
|v 15
|y 2024
|x 2073-4433
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024415/files/FZJ-2024-02158.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024415/files/FZJ-2024-02158.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024415/files/FZJ-2024-02158.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024415/files/FZJ-2024-02158.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024415/files/FZJ-2024-02158.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024415
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187051
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:26:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:26:43Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:26:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21