001024445 001__ 1024445
001024445 005__ 20240712113053.0
001024445 0247_ $$2doi$$a10.1021/acssuschemeng.2c01349
001024445 0247_ $$2WOS$$aWOS:000813628900001
001024445 037__ $$aFZJ-2024-02188
001024445 082__ $$a540
001024445 1001_ $$0P:(DE-Juel1)176118$$aYe, Ruijie$$b0
001024445 245__ $$aWater-Based Fabrication of a Li|Li7La3Zr2O12 |LiFePO4 Solid-State Battery─Toward Green Battery Production
001024445 260__ $$aWashington, DC$$bACS Publ.$$c2022
001024445 3367_ $$2DRIVER$$aarticle
001024445 3367_ $$2DataCite$$aOutput Types/Journal article
001024445 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712219364_10981
001024445 3367_ $$2BibTeX$$aARTICLE
001024445 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024445 3367_ $$00$$2EndNote$$aJournal Article
001024445 520__ $$aSolid-state lithium batteries (SSLBs) are considered to be one of the most promising next-generation Li batteries due to their high capacity and intrinsic safety. However, their sustainable processing is often poorly investigated but could offer additional advantages over conventional batteries in terms of ecological and economic benefits. In this work, a sustainable, water-based processing route for garnet-supported SSLBs featuring a LiFePO4 (LFP)-poly(ethylene oxide) (PEO) composite cathode is presented. Both the LFP-PEO cathode and the thin free-standing garnet separator (105 μm) are fabricated by water-based tape-casting. After optimizing the composition of the cathode, the full cell with a thin cathode (∼45 μm) delivers a high capacity of 136 mAh g–1 with a high Coulombic efficiency over 99% and good cycling stability for 50 cycles. However, the performance and cycling stability decrease when thicker cathodes (∼110 μm) and higher rates were applied, indicating the need for further optimization. Nevertheless, the here-presented water-based fabrication route provides a baseline for further improvements and pushes SSLB fabrication further toward a green battery production.
001024445 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024445 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001024445 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024445 7001_ $$0P:(DE-HGF)0$$aHamzelui, Niloofar$$b1
001024445 7001_ $$0P:(DE-Juel1)174298$$aIhrig, Martin$$b2
001024445 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3$$eCorresponding author
001024445 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b4$$ufzj
001024445 773__ $$0PERI:(DE-600)2695697-4$$a10.1021/acssuschemeng.2c01349$$gVol. 10, no. 23, p. 7613 - 7624$$n23$$p7613 - 7624$$tACS sustainable chemistry & engineering$$v10$$x2168-0485$$y2022
001024445 8564_ $$uhttps://juser.fz-juelich.de/record/1024445/files/paper.pdf$$yRestricted
001024445 8564_ $$uhttps://juser.fz-juelich.de/record/1024445/files/paper.gif?subformat=icon$$xicon$$yRestricted
001024445 8564_ $$uhttps://juser.fz-juelich.de/record/1024445/files/paper.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024445 8564_ $$uhttps://juser.fz-juelich.de/record/1024445/files/paper.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024445 8564_ $$uhttps://juser.fz-juelich.de/record/1024445/files/paper.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024445 909CO $$ooai:juser.fz-juelich.de:1024445$$pVDB
001024445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176118$$aForschungszentrum Jülich$$b0$$kFZJ
001024445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b3$$kFZJ
001024445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b4$$kFZJ
001024445 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024445 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001024445 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS SUSTAIN CHEM ENG : 2022$$d2023-10-26
001024445 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001024445 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001024445 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001024445 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001024445 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001024445 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001024445 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001024445 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001024445 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS SUSTAIN CHEM ENG : 2022$$d2023-10-26
001024445 920__ $$lno
001024445 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001024445 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
001024445 980__ $$ajournal
001024445 980__ $$aVDB
001024445 980__ $$aI:(DE-Juel1)IEK-1-20101013
001024445 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024445 980__ $$aUNRESTRICTED
001024445 981__ $$aI:(DE-Juel1)IMD-4-20141217
001024445 981__ $$aI:(DE-Juel1)IMD-2-20101013