001     1024445
005     20240712113053.0
024 7 _ |a 10.1021/acssuschemeng.2c01349
|2 doi
024 7 _ |a WOS:000813628900001
|2 WOS
037 _ _ |a FZJ-2024-02188
082 _ _ |a 540
100 1 _ |a Ye, Ruijie
|0 P:(DE-Juel1)176118
|b 0
245 _ _ |a Water-Based Fabrication of a Li|Li7La3Zr2O12 |LiFePO4 Solid-State Battery─Toward Green Battery Production
260 _ _ |a Washington, DC
|c 2022
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712219364_10981
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state lithium batteries (SSLBs) are considered to be one of the most promising next-generation Li batteries due to their high capacity and intrinsic safety. However, their sustainable processing is often poorly investigated but could offer additional advantages over conventional batteries in terms of ecological and economic benefits. In this work, a sustainable, water-based processing route for garnet-supported SSLBs featuring a LiFePO4 (LFP)-poly(ethylene oxide) (PEO) composite cathode is presented. Both the LFP-PEO cathode and the thin free-standing garnet separator (105 μm) are fabricated by water-based tape-casting. After optimizing the composition of the cathode, the full cell with a thin cathode (∼45 μm) delivers a high capacity of 136 mAh g–1 with a high Coulombic efficiency over 99% and good cycling stability for 50 cycles. However, the performance and cycling stability decrease when thicker cathodes (∼110 μm) and higher rates were applied, indicating the need for further optimization. Nevertheless, the here-presented water-based fabrication route provides a baseline for further improvements and pushes SSLB fabrication further toward a green battery production.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hamzelui, Niloofar
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ihrig, Martin
|0 P:(DE-Juel1)174298
|b 2
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 3
|e Corresponding author
700 1 _ |a Figgemeier, Egbert
|0 P:(DE-Juel1)165182
|b 4
|u fzj
773 _ _ |a 10.1021/acssuschemeng.2c01349
|g Vol. 10, no. 23, p. 7613 - 7624
|0 PERI:(DE-600)2695697-4
|n 23
|p 7613 - 7624
|t ACS sustainable chemistry & engineering
|v 10
|y 2022
|x 2168-0485
856 4 _ |u https://juser.fz-juelich.de/record/1024445/files/paper.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024445/files/paper.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024445/files/paper.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024445/files/paper.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024445/files/paper.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1024445
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176118
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165182
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2022
|d 2023-10-26
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21