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Abstract: Global neural dynamics emerge from multi-scale brain structures, with nodes dynamically
communicating to form transient ensembles that may represent neural information. Neural activity
can be measured empirically at scales spanning proteins and subcellular domains to neuronal
assemblies or whole-brain networks connected through tracts, but it has remained challenging to
bridge knowledge between empirically tractable scales. Multi-scale models of brain function have
begun to directly link the emergence of global brain dynamics in conscious and unconscious brain
states with microscopic changes at the level of cells. In particular, adaptive exponential integrate-
and-fire (AdEx) mean-field models representing statistical properties of local populations of neurons
have been connected following human tractography data to represent multi-scale neural phenomena
in simulations using The Virtual Brain (TVB). While mean-field models can be run on personal
computers for short simulations, or in parallel on high-performance computing (HPC) architectures
for longer simulations and parameter scans, the computational burden remains red heavy and vast
areas of the parameter space remain unexplored. In this work, we report that our HPC framework, a
modular set of methods used here to implement the TVB-AdEx model for the graphics processing
unit (GPU) and analyze emergent dynamics, notably accelerates simulations and substantially
reduces computational resource requirements. The framework preserves the stability and robustness
of the TVB-AdEx model, thus facilitating a finer-resolution exploration of vast parameter spaces
as well as longer simulations that were previously near impossible to perform. Comparing our
GPU implementations of the TVB-AdEx framework with previous implementations using central
processing units (CPUs), we first show correspondence of the resulting simulated time-series data
from GPU and CPU instantiations. Next, the similarity of parameter combinations, giving rise
to patterns of functional connectivity, between brain regions is demonstrated. By varying global
coupling together with spike-frequency adaptation, we next replicate previous results indicating inter-
dependence of these parameters in inducing transitions between dynamics associated with conscious
and unconscious brain states. Upon further exploring parameter space, we report a nonlinear
interplay between the spike-frequency adaptation and subthreshold adaptation, as well as previously
unappreciated interactions between the global coupling, adaptation, and propagation velocity of
action potentials along the human connectome. Given that simulation and analysis toolkits are made
public as open-source packages, this framework serves as a template onto which other models can be
easily scripted. Further, personalized data-sets can be used for for the creation of red virtual brain
twins toward facilitating more precise approaches to the study of epilepsy, sleep, anesthesia, and
disorders of consciousness. These results thus represent potentially impactful, publicly available
methods for simulating and analyzing human brain states.
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1. Introduction

The brain is a multi-scale organ, with relevant scales spanning molecules to synapses,
to neurons, to local networks consisting of populations of neurons connected by inter-region
tracts, and together forming global brain structures that observe and constrain global brain
dynamics. Computational models that connect these biologically relevant scales are an ac-
tive area of research [1–5]. However, a scale-integrated understanding—relating the actions
and nonlinear interactions of microscopic variables to macroscopic observables underlying
global brain function—remains empirically challenging to derive from multi-modal experi-
mental measurements [6–8]. Thus, computational models can support progress in bridging
our understanding across spatio-temporal scales, with the goal of ameliorating predictions
for future experimental studies and, potentially, for personalized medical interventions.
Recent progress has been made on the modeling of global phase transitions between
unconscious-like (synchronous, regular) and conscious-like (asynchronous, irregular) dy-
namics that emerge from the same human connectomes, depending on the parameters
describing cellular phenomena at the level of spikes [9–12]. Specifically, human, mouse,
and primate TVB-AdEx (an implementation of the adaptive exponential (AdEx) model for
The Virtual Brain (TVB)) models can describe the emergence of conscious-like asynchronous,
irregular activity at global brain scales based on diminished spike-frequency adaptation
in simulated waking states due to enhanced acetylcholine concentrations (common to
conscious brain states). In contrast, unconscious-like synchronous, regular global brain
activity can be simulated by enhancing spike-frequency adaptation, biologically related
to diminished neuromodulation during sleep [9,10,13]. Further, cellular hyperpolariza-
tion, a mechanism onto which multiple anesthetics converge, can lead to unconscious-like
dynamics [14]. However, biophysical-based multi-scale models are complex, requiring
substantial computational resources to represent large parameter spaces that describe rele-
vant observables. In addition to studying the behavior of simulations resulting from the
modulation of any one variable, it is important to understand the ensemble of parame-
ters and observables, as multiple sets may act redundantly and/or interact nonlinearly.
While parameters can be estimated through inference [11,15–18], such methods can be
complemented by a better understanding of general parameter spaces of these complex,
multi-scale, biophysical human brain models, in order to assess whether previously un-
considered predictions naturally emerge. We have selected the TVB-AdEx model for this
benchmarking study due to its significant computational requirements, potential substan-
tial further scientific contribution to theoretical studies of consciousness, and under-study
of its behavior arising from different parametrizations. Nevertheless, it is important to
note that the presented framework is not restricted to the AdEx model; other neural mass
models can be employed in accelerated/ameliorated form, thanks to our modular design.

The present work describes the GPU implementation of the TVB-AdEx, a multi-scale
model that describes the population statistics of excitatory and inhibitory AdEx neurons
using mean-field approximations with spatial coordinates mapping to human brain re-
gions. The AdEx mean-field model was initially developed to describe the spontaneous
and evoked dynamics of local populations of neurons with transfer functions that are
semi-analytically derived [19,20]. To form the (human) TVB-AdEx, mesoscopic AdEx
mean-fields are placed on and connected by empirical anatomical and diffusion mag-
netic resonance imaging (MRI) data. The CPU-based (https://github.com/davidaquilue/
TVBAdEx_ParSweep/tree/main, accessed on 1 November 2023) version of the TVB-AdEx
has previously been used to study scale-integrated mechanisms underlying the emer-
gence of conscious- and unconscious-like brain state dynamics using a local PC, EBRAINS
(https://www.ebrains.eu/, accessed on 1 November 2023), an online aggregate of mod-
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els [9], and an MPI multi-node CPU setup to study limited compound parametrizations for
five parameters known to be fundamental to the behaviour of this AdEx model [10].

Here, we report that our GPU implementation of the TVB-AdEx model substantially
ameliorates the original CPU instantiation by accelerating model performance and facilitat-
ing post data-analysis. The TVB-HPC framework is not another platform; it represents an
expanded framework built upon RateML, TVB’s [21] model generator [22]. RateML is per-
formant, modular, reusable, and outperforms solutions such as neurolib [11], FastTVB [23],
and Pyrates [24] in terms of magnitude of explorable parameter space and concurrent TVB
instances. Specifically, our results show that it is an excellent compute accelerator for TVB-
AdEx simulations, allowing for high-dimensional explorations of the parameter space and
the identification of parameters acting and interacting to bias brain state dynamics. This
work highlights the importance of performant processing for complex brain models, such
as biophysical multi-scale TVB-AdEx models, since the dimensionality of parameter space
grows easily, quickly turning the problem intractable on previously existing simulation
platforms. By applying a wide range of accessible analysis methods, users are further
enabled to explore observables describing simulated brain dynamics, including power
spectral densities, exhibitory and inhibitory firing rates, the quantification of up and down
states, and structure–function relationships, using a repository where these tools are pub-
licly available in EBRAINS (https://wiki.ebrains.eu/bin/view/Collabs/rateml-tvb/Lab,
accessed on 1 November 2023). The TVB-HPC project, including the driver and GPU
AdEx model, analysis toolkit, and graph script are also available at the following link:
https://github.com/DeLaVlag/vast-TVB-space(accessed on 1 November 2023).

We report that a single GPU, an NVIDIA A100 Tensor Core GPU with 40 GB and
Compute Unified Device Architecture (CUDA) version 12.2.0, can be employed to explore
roughly 17,000 parameter combinations (unique TVB simulations), simulating 68 brain
regions for 50,000 simulation steps of 0.1 ms each. Utilizing a configuration comprising
384 nodes—the maximum available nodes for regular production—with four GPUs each fa-
cilitated the concurrent execution of approximately 25 million TVB instances. Theoretically,
employing all 936 of the GPU-enhanced nodes within the Juwels Booster supercomputing
cluster (https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html, accessed on
1 November 2023), each with four GPUs connected via NVLink3 (high-speed commu-
nication technology), would allow a simulation to concurrently execute approximately
60 million TVB instances, each configured with a distinct set of parameters. The execu-
tion of a simulation representing 5 s of biological time would require roughly 8 min to
complete for this entire ensemble of instances. Thus, the implementation reported here
represents a powerful, personalizable simulation framework to complement and extend
multi-scale empirical brain research that is built into EBRAINS tools intended to be useful
for fundamental and translational research, with the capacity to inform medical providers
in search of precision tools capable of providing multi-scale explanations and predictions
for individual human subjects.

2. Materials and Methods

The TVB-AdEx model uses mean-field modeling to integrate properties of excitatory
and inhibitory AdEx neurons across scales. The populations are connected via a human
connectome. It was observed that the macroscopic dynamics resembling brain activity
emerge during simulation, with global conscious- and unconscious-like activity emerging
from the tuning of parameters representing microscale phenomena [9,10,14].

2.1. Mean-Field Model

The TVB-AdEx model is based on a mean-field method capturing the second-order
firing rate of an excitatory and inhibitory population of adaptive exponential integrate-and-
fire neurons [25] using a Master Equation formalism [19,26], as well as the first order of
the adaptive current of the excitatory population [20]. It results in a system of differential
equations describing the time evolution of the mean firing rate (ν) of the two populations

https://wiki.ebrains.eu/bin/view/Collabs/rateml-tvb/Lab
https://github.com/DeLaVlag/vast-TVB-space
https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html


Appl. Sci. 2024, 14, 2211 4 of 21

(µ = e, i), the variance (cλ,η , where λ = η) and covariance (cλ,η , where λ ̸= η) of excitatory
and inhibitory firing rates (λ = e, i and η = e, i), and the mean adaptive current (Wµ) for
the excitatory population.

T
dνµ

dt
= (Fµ − νµ) +

1
2

cλη
∂2Fµ

∂νλ∂νη
(1)

T
dcλη

dt
= δλη

Fλ(1/T − Fη)

Nλ
+ (Fλ − νλ)(Fη − νη)

+
∂Fλ

∂νµ
cηµ +

∂Fη

∂νµ
cλµ − 2cλη (2)

∂W
∂t

= −W/τw + beνe + ae(µV(νe, νi, W)− EL,e) (3)

where T is the time constant of the firing rate equations and covariance equations and Fµ is
the transfer function. τw, be, and ae are, respectively, the time constant, the spike-frequency,
and subthreshold of the adaptation. EL is the leak reversal potential and µV is an estimation
of the average voltage of the excitatory population.

A stochastic equation, denoted as Equation (4), is employed to represent an Ornstein–
Uhlenbeck (OU) process, capturing the random fluctuations of the mean firing rate, com-
monly known as the noise. This process is derived by introducing a mean-reverting term
to standard Brownian motion, a stochastic process similar to the random movement of
particles in a fluid or gas. This mean-reverting term is considered to be a stabilizing compo-
nent to the motion, resulting in a tendency to return to a central value. The computation of
the derivative of this stochastic equation is stored in GPU memory to be available for the
next time-step.

τOU
dOUt

dt
= (µ − OUt) + σ dWt (4)

where µ (=0.0) is the mean of the noise, σ (=1.0) is the variance of the noise, and dWt is
a Wiener process (Brownian motion). τOU represents the time constant of the noise. The
dWt is represented by a Gaussian noise implemented with the CUDA Random Number
Generation (CURAND) library, making use of a XORWOW generator, a variation on the
XOR shifting generators. The next number in the sequence is generated by repeatedly
taking the exclusive OR of a number with a bit-shifted version of itself [27].

2.2. Transfer Function

The transfer function (TF) gives the instantaneous mean firing rate following the state
of the populations and the external inputs [19,20,26].

Fµ={e,i} = Fµ={e,i}(νe
k,tot + wNoise. OUk

t + cFµ,e , νk
i + cFµ,i , Wk

µ) for brain region k, (5)

where νe
k,tot = g

(
j=1

∑
68

ukjνej(t − τkj)

)
is the weighted sum of all firing rates of all brain

regions, input to the region k. The weights (ukj) are defined by the connectome. The delays
(τk,j) equal the track lengths between the region k and region j divided by the speed. OUk

t is
the noise associated with the brain region (see above). cFµ,λ is either the constant excitatory
or inhibitory input to the population.

One of the principal novel aspects of this formalism is that the mean-field depends
on the specification of the transfer function Fµ={e,i}, which can be obtained according to
a semi-analytical approach [19], and thus can be potentially applicable to many different
models [28]. In this approach, the transfer function is numerically fit to single-cell responses
using an analytic template depending on three parameters: the mean voltage (µV), its
standard deviation (σV), and its time correlation decay time (τV). Additionally, a voltage
threshold (Ve f f

thre) is estimated from the properties of an individual neuron taken as a second-
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order polynomial (depicted in Table 1) of the previous quantities (µV , σV, τV). Using the
assumption that the voltage membrane of the population follows a normal law and the
phenomenological voltage threshold, it is possible to estimate the mean firing rate of the
population, i.e., the output of the transfer function [19,20].

Table 1. Polynomial of the phenomenological voltage threshold for the transfer function (mV).

Cell Type P0 PµV PσV PτNV Pµ2 Pσ2 PτNV2 PVσ PµVτ N PσVτN

RS-Cell −48.9 5.1 −25.0 1.4 −0.41 10.5 −36.0 7.4 1.2 40.7

FS-Cell −51.4 0.4 −8.3 0.2 −0.5 1.4 −14.6 4.5 2.8 15.3

To advance beyond previously explored corners of the phase space for the multi-
scale TVB-AdEx model with the published implementation [9,10], prohibitively large
computational resources would have been required. Therefore, we have implemented
the TVB-AdEx model for GPUs, which can be more efficient for computations that are
embarrassingly parallel. Parameterization in general is embarrassingly parallel due to an
absence of dependency between simulations; each parametric combination does not depend
on other concurrent simulations. A GPU is therefore an excellent choice for acceleration;
the data latency of the individual simulations is largely covered by the many concurrent
simulations. The many smaller computational units of the GPU, in comparison to a CPU,
have also proven to be sufficient for TVB simulations.

2.3. TVB-AdEx to GPUS

To accommodate the intricate regimes associated with various parameter settings
within the TVB-AdEx model, a GPU-accelerated version has been developed. The TVB
model generator, RateML, offers the capability to create customized rate-based or mean-
field models. In the standard workflow of this tool, an XML file can be populated with
TVB generic properties, including the derivative functions of the model. This file is then
translated into a fully fledged TVB model or a GPU model and driver for the execution
of the model. Because the AdEx model has a complex transfer function, in describing
the firing rate of the neuron populations, the regular usage of RateML is not possible.
However, the GPU model introduced here is based on the blueprint for TVB GPU models,
manually annotated with the added model complexity, including the function calls to the
transfer function (zerlaut.c). The transfer function itself is specified in a separate header
file (zerlaut.h). Next to a GPU model which supports parameter sweeps, the model driver
(model_driver_zerlaut.py) object is also generated when invoking RateML. Furthermore,
this driver has been manually annotated for the computation and comparison of the
functional connectivity (FC) to an externally obtained FC.

The model driver and model for the TVB simulation using the GPU AdEx can
be initiated on any CUDA-capable GPU device. An example of the execution com-
mand is as follows:

python model_driver_zerlaut_mpi.py -s0 6 -s1 6 -s2 6 -s3 6 -s4 6
-n 5000 -dt 0.1 -vw -cs 3 -cf connectivity_zerlaut_68.zip
-ff pearson_0.4_72_-64_-64_19 -gs

A number of simulator settings are exposed to the user on command line. Many more
settings are exposed to the user but the most important are highlighted. The s0–s4 are the
flags that set the resolution for the sweep parameters of the specified parameters. That is,
-s0 6 generates six values equally spaced within the defined range for the first parameter of
the space to be explored. Normally, the lower and upper bounds of the parameters to sweep
can be indicated in the XML file or can be changed in the driver file. This will result in the
generation of an array of all the possible parameter combinations, representing the total
work-items. The work-items correspond to the grid size indicating the total threads which



Appl. Sci. 2024, 14, 2211 6 of 21

spawn on the GPU. Each thread spawned is a TVB simulation with a unique parameter
combination. The two-dimensional grid for the GPU threads is determined recursively
according to the number of work-items. The program will try to fit the work-items in blocks
of 32 × 32 threads and increase the number of blocks, alternating for the x- and y-axis
dimensions in order to find the optimal population of the GPU.

The simulation of the GPU consists of two loops, an inner-loop, which determines the
number of iterations of the simulation on the GPU, and an outer-loop, which determines
the number of times a GPU-instance spawns. The −n sets the number of simulation steps
for the outer-loop and determines the number of times a GPU-instance is spawned. The
steps for the inner-loop are computed by dividing the period of the time-series by the
delta-time, −dt. This influences the precision of the computation of the time derivatives
of the dynamical system, as the end result is the average of the number of these steps,
and reduces the number of times the GPU has to off-load its memory contents to the
disk. Alongside the spawning of multiple TVB simulations on the GPU itself, the driver
makes use of 32 streams for the iterations of the outer-loop, executing the GPU-instances
concurrently as well.

2.4. Output

After each iteration of the outer-loop, the set of observables is written to memory.
The number of observables can be manually increased by uncommenting the lines added
for the default state variables or by adding your own observable by setting [...] to a valid
expression in the driver file:

// tavg(i_node + 0 * n_node) += C_ee/n_step;
tavg(i_node + 1 * n_node) += [...]/n_step;

In this scenario, the derived observable is the average across all the inner steps, for one
iteration of the outer-loop. It is noteworthy that the characterization is not constrained
exclusively to the average value.

The connectivity file can be specified with the −c f flag. If not specified, a connectome
from the standard TVB library can be selected instead. In the example, a distinctive connec-
tome, connectivity_zerlaut_68.zip, originally employed in the scale-integration studies [9]
is utilized. The values for the weights of the connectome, used to determine the tempo-
ral connections of the regions, are averaged before simulation. The −cs3 flag specifies
the conductance speed of the connectome in m/s and also determines the depth of the
temporal buffer.

The GPU obtains the functional connectivity (FC) by computing the covariance of
the resulting time-series for all concurrent TVB simulations, which, in this study, is used
for structure-to-function analysis (FCSC). The FCSC, the correlation with the structure
connectivity (SC), represented by the properties of the connectome and the obtained
covariance matrix, is determined with the Pearson correlation. The driver can also perform
a comparison to an externally obtained reference FC matrix by correlating it to the computed
FC of the simulation, also by making use of the Pearson coefficient. The file for input can
be specified with the − f f flag. The framework also integrates the fMRI_Obs library
from https://github.com/dagush/fMRI_Observables (accessed on 1 November 2023),
enabling run-time computation of the phase functional connectivity dynamics (phFCD) for
comparison. Optionally, a Balloon–Windkessel GPU kernel [29] can be applied to obtain
the BOLD time-series, enabling the comparison with fMRI imaging as well.

2.5. MPI

The framework is enhanced with a message passing interface (MPI) (https://www.
mpi-forum.org/docs/, accessed on 1 November 2023), enabling the simultaneous execution
of multiple parallel processes distributed across compute nodes within a high-performance
computing cluster. This utilization of MPI, a standard communication protocol in paral-
lel computing, facilitates enhanced computational efficiency by harnessing the collective

https://github.com/dagush/fMRI_Observables
https://www.mpi-forum.org/docs/
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processing power of multiple nodes. A single GPU can be assigned to each MPI process
and, as there are no dependencies between the execution of the simulations with different
parameters, all processes can utilize these resources in parallel. For example, the com-
mand srun -N2 –ntasks-per-node=4 instantiates multiple MPI processes across 2 nodes, each
executing many TVB simulations concurrently on independent GPUs. In this example,
the MPI world consists of 8 processes, each assigned a single GPU. The computational
workload, referred to as work-items, will be evenly distributed among all available GPUs.
This distribution is achieved by reshaping the array in accordance with the world size
and subsequently allocating each rank a corresponding portion of the workload. When
multiple GPUs are specified for execution, the driver will sort and gather the results from
each instance in the MPI world and output the ten best-fitting simulations. The sorting
is enabled using the -gs flag, which is short for grid search. The -v flag sets the output
to verbose and -w saves the 10 best time-series and their parameters and fitness of each
world to a file. When run in verbose mode, the driver outputs information about the
simulation and GPU memory allocation for rank 0 only. It also will also output detailed
error information on memory allocation or run-time errors, i.e., too large parameter sets or
grid allocation failures.

The simulation uses a standard forward Euler method to approximate the time deriva-
tive integral, and the linear coupling is applied to globally connect the brain regions for
computing the brain dynamics in time, as implemented by the standard TVB library.

2.6. Analysis Metrics

The framework adapts and incorporates an extensive array of tools [9,10] (as listed
in Table 2 below) in order to analyze the results from the GPU simulations. The outcomes
derived from the analysis are systematically stored in a database using the Python library
“sqlite3”(https://www.sqlite.org/index.html, accessed on 1 November 2023), where they
are formatted and organized using Structured Query Language (SQL).

Table 2. The incorporated analysis metrics showing the function name and description.

Metric Description

mean_FC Average FC from Pearson corr. of time-series firing rate

mean_PLI Average PLI between brain regions.

mean_UD_duration Mean duration of UP and DOWN states

psd_fmax_ampmax PSD frequency peaks and amplitude

fit_psd_slope Fits log(PSD) = log(β/ f α)

The phase locking index (PLI) is a statistical measure frequently employed in the
fields of neuroscience and signal processing. Its primary purpose is to evaluate the level
of phase synchronization or phase consistency observed between the different nodes of
the time-series, notably in the context of electroencephalography (EEG) and magnetoen-
cephalography (MEG) data analysis [9,30,31]. The PLI serves as a quantification tool for
assessing the degree to which the phase angles of two signals exhibit synchronization
tendencies over a period of time.

The terms “up” and “down” states are utilized to denote distinct patterns of neuronal
activity within the brain. These patterns are of particular significance in the realms of
neural oscillations and sleep research. They are closely linked to the sleep–wake cycle and
serve as vital components for comprehending the dynamics of brain function throughout
periods of sleep and wakefulness.

The acronym “PSD” refers to “Power Spectral Density” in the field of signal processing.
This fundamental concept serves as a means to articulate the manner in which power or
energy is distributed within a signal concerning its frequency components. PSD plays a

https://www.sqlite.org/index.html
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pivotal role by furnishing essential insights into the spectral characteristics and frequency
content of the signal under examination.

The PSD is approximated by the following function:

log(PSD) = log(β/ f α)

in which f is the frequency; α and β are the parameters that affect the shape and the
amplitude of the function, respectively. The goal of fitting the PSD to this particular
function is to find the values of the parameters α and β that best describe the observed data.
By applying a logarithm to both sides of the equation, a linear relationship is obtained,
which is easier to work with mathematically. By fitting the PSD data to this function
and determining the values of α and β, we can gain a better understanding of how the
power in the signal is distributed across different frequencies and the characteristics of the
spectral density.

3. Results

To reflect multi-scale neural activity, biophysical models of the brain can become
complex, with dynamical behavior dependent on each parameter as well as potentially
nonlinear interactions between parameters. Toward progress in understanding the integra-
tion of neural phenomena across scales, we have constructed a multi-GPU implementation
of the TVB-AdEx model: a multi-scale model summarizing the statistics of excitatory
and inhibitory populations of spiking neurons [19,20] that has demonstrated utility in
modeling transitions between conscious- and unconscious-like brain dynamics [9,14,19,20].
Specifically, by coupling mean-fields representing brain regions by human connectome
data [9], it was observed that macroscopic dynamics resembling brain activity emerge
during simulation, with globally conscious- and unconscious-like activity dependent on
parameters representing microscale phenomena known to be related to sleep–wake cycles
and the actions of anesthetic agents [9,10,14].

To further advance beyond previously explored corners of the phase space for the
multi-scale TVB-AdEx model with the published implementation [9,10,14], prohibitively
large computational resources would have been required. Therefore, we have implemented
the TVB-AdEx model for GPUs, which can be more efficient for computations that are
embarrassingly parallel. Parameterization in general is embarrassingly parallel due to
an absence of dependency between simulations; each parametric combination does not
depend on other concurrent simulations. The GPU can therefore be an excellent choice for
acceleration; the data latency of the individual simulations is largely covered by the many
concurrent simulations.

For a detailed description of the implementation of our TVB-HPC framework, see
Materials and Methods. Briefly, RateML’s tools were modified and manually annotated to
produce the simulation code, its dependencies, and outputs, including the transfer function
and analysis pipelines. The framework can be initiated on any CUDA-capable GPU device.

To determine whether the GPU model robustly reproduces the behavior of the previ-
ously published CPU implementation [9,10,14], simulations involving multiple parameter
sets are conducted on the platform. These simulations are executed without introducing
noise, aiming to assess the framework’s ability to accurately replicate CPU results. The eval-
uation is based on both the mean-squared error and the correlation coefficient of time-series
generated with the same initial conditions and kernels, which, for all parameter combina-
tions, are observed to have differences that do not exceed 1 × 10−9 and 1.0, respectively.
This implies that the CPU and GPU models generate identical results.

3.1. Functional Connectivity

To showcase the efficacy of the functional connectivity (FC) comparison, a series of
simulations are carried out. The CPU data are analogous, i.e., an externally acquired EEG
scan representing four distinct types of brain states. The goal is to hypothetically create
a “virtual brain twin” of the CPU data by obtaining a GPU parametrization that aligns
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with the observed CPU data. The externally obtained FCs are compared to the online
computed FC from the simulation of the TVB-AdEx model on the GPU in order to find the
best matching sets of parameters reproducing the model’s behaviour. Parameter sets with
values S0(g = 0.0, be = 0.0), S1(g = 0.3, be = 24), S2(g = 0.4, be = 72), S3(g = 0.4, be = 120)
are considered. For a full description on how to make use of this comparison, see Section 2.
The reported fitness represents the Pearson correlation between the external (CPU) and the
FC computed online with a GPU, i.e., Equation (6):

ρxy =
Cov(x, y)

σxσy
. (6)

The results of the four FC comparisons conducted on data from simulations of the
model for different states are presented in Figure 1. In total, 16,384 parameter combinations
are considered. The results provide a visual representation of the distribution of the top
10 distinct solutions across the parameter space for the different parameter sets. In order
to enhance the visualization, a solution sphere has been constructed, with the radius of
each dimension represented by the respective range values. The results indicate an overall
parameter match, achieving approximately 70% similarity with the reference FC.

It is essential to note that FC comparisons lack a unique solution, due to the stochastic
nature of the AdEx model as Brownian noise mimics neural fluctuations and activates the
model. The GPU, in this context, showcases its ability to discover multiple characteriza-
tions for the model that closely align with the FC. In studies involving FC comparisons,
a intersession correlations are deemed high when exceeding 70% [32]. The obtained results
affirm that the GPU can successfully replicate such outcomes, producing highly correlated
FC results for externally acquired data-sets.

Figure 1. Visual representation of the best 10 solutions; fitting GPU TVB-AdEx to CPU TVB-AdEx
reference FC matrices for four different parameter sets indicates good mapping between stochastic
models for analyses of brain dynamics with no unique solution. The value of Ele and Eli is −64 mV
for the reference FC. The 3D spheres depict the solution space of the GPU TVB-AdEx and the center
red dot represents the input parameters of the reference CPU TVB-AdEx FC.
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3.2. Vast Parameter Space Exploration and Analysis

Leveraging the computational resources of the Juwels Booster compute cluster at the
Forschungszentrum Jülich empowers extensive parameter space exploration, enabling a
comprehensive investigation across a wider spectrum of parameters, as described in Table 3.
This extensive computational capability has allowed us to not only validate the model,
but to also investigate the extensive properties of the associated parameter space. These
considerable hardware resources have also facilitated the search for transitions in simulated
brain dynamics, the identification of peaks in the power spectrum, the characterization of
up and down states typical for synchronous behavior (for a full description, see Table 2),
and the examination of factors such as the influence of the velocity of action’s potential
propagation through the connectome on adaptation (for a full description, see Table 3).

Table 3. Parameters targeted for vast exploration.

Name Range Resolution Description

g [0.1, 0.9] 8 Coupling strength connectome

be [0, 100] 8 Spike-frequency adaptation [pA]

wNoise [1 × 10−9, 1 × 10−4] 4 Scaling weight of noise

speed [1, 7] 4 Connectome speed [m/s]

τw [250, 750] 4 Adaptation time constant exc. neurons [ms]

ae [−10, 20] 4 Subthreshold adaptation conductance [nS]

cFe,e [0.3 × 10−3, 0.5 × 10−3] 2 External input [Hz]

cFe,i [0, 0.5 × 10−3] 2 External input [Hz]

cFi,e [0.3 × 10−3, 0.5 × 10−3] 2 External input [Hz]

cFi,i [0, 0.5 × 10−3] 2 External input [Hz]

3.2.1. The Effect of Modulating Coupling and Spike-Frequency Adaptation

The TVB-AdEx model can be used to study different types of brain dynamics associ-
ated with different states of consciousness; asynchronous irregular dynamics associated
with wakeful, conscious awareness as well as synchronous, regular dynamics associated
with unconscious brains states. To validate whether the GPU model can faithfully represent
dynamics associated with these regimes through the modulation of variables previously
studied [10], the global coupling, g, and spike-frequency adaptation, be, parameters were
swept over the aforementioned ranges (Table 4). In Figure 2, time-traces display the raw
output for a sweep of g and be in the ranges of [0.3, 0.9] and [0, 120], respectively, for a total
of 36 parameter combinations, showing the model’s ability to simulate transitions between
disordered asynchronous and more ordered synchronous behavior. These results demon-
strate the interaction between coupling and spike-frequency adaptation, showing the most
synchronous-regular activity in the bottom-right-corner panel, where both parameters are
maximal, thus further replicating the previously established behavior of the CPU model
using GPUs for the TVB-HPC framework.

Furthermore, Figure 3 shows that the excitatory firing rate, Fe, is more sensitive to the
spike-frequency adaptation, and the excitatory firing rate variability is higher for lower
coupling values. In contrast, the inhibitory firing rate Fi is influenced by both coupling
and spike-frequency adaptation. Elevated coupling or the spike-frequency adaptation
leads to an increase in both the mean and the variance of Fi. These results concur with the
time-series displayed in Figure 2, illustrating that elevated coupling values combined with
high spike-frequency adaptation (bottom right) correspond to heightened variance and
mean values of Fi. Visa versa, when both the spike-frequency adaptation and the coupling
are low, the mean values for Fi are lower.



Appl. Sci. 2024, 14, 2211 11 of 21

Table 4. Memory utilization and corresponding number of unique TVB simulations (#TVBs) for the
GPU for strong scaling.

Nodes Memory (GB) #TVBs

1 36,330 16,384

2 18,622 8192

4 9768 4096

8 5336 2048

16 3120 1024
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Figure 2. Results of a 6 × 6 parameter sweep for global coupling, g, and spike-frequency adaptation,
be, parameters. The exhibitory firing rate, Fe, is depicted in red and the inhibitory firing rate, Fe,
in blue. The g and be parameters are swept for ranges [0.3, 0.9] and [0, 120], respectively. Results show
the output time-series for each individual set of parameters printed above each plot. The plots show
the interaction of g and be, resulting in a gradual transition from asynchronous (top-left corner) to
synchronous behavior (bottom-right corner) for the GPU TVB-AdEx model.
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Figure 3. Parameter exploration for global coupling and spike-frequency adaptation. The other
parameters are as follows: wNoise: 1.0 × 10−4, speed: 3.0, τw: 417, ae: 0.0, cFe,e : 0.5 × 10−3, cFe,i : 0.0, cFi,e :
0.5 × 10−3, cFi,i : 0.0.

3.2.2. The Effects of Modulating the Adaptation Time Constant

As depicted in Figure 4, an increase in the adaptation time parameter τw yields several
effects within the model. Specifically, it leads to a reduction in the mean firing rate, enhances
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the linearity of the power–frequency relationship, diminishes the peak frequency value,
and promotes an increase in correlation with the structural connectivity (SC).
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Figure 4. Parameter exploration for global coupling and spike-frequency adaptation when modulat-
ing the adaptation time constant τw. The other parameters are as follows: wNoise: 1.0 × 10−4, speed:
3.0, ae: 0.0, cFe,e : 0.5 × 10−3, cFe,i : 0.0, cFi,e : 0.5 × 10−3, cFi,i : 0.0.

It is observed that, for three specific values (τw = 250, g = 0.90, b = 102; τw = 750.0,
g = 0.90, be = 85 and τw = 750.0, g = 0.8, b = 102), the mean firing rate exceeds 5.0 Hz and
the variance exceeds 2.5 Hz. In this case, some brain regions are attracted toward the fixed
point around 200 Hz due to the stochastic nature of the model. The outliers depicted in the
subsequent figures share a common explanation.

3.2.3. The Effects of Modulating Excitatory Subthreshold Adaption Conductance

The occurrence of activity at ae = −10 pA, as depicted in Figure 5, may be attributed
to the fact that, during this particular condition, the adaptation acts as an excitatory
mechanism due to negative values. When ae reaches −10, an issue arises where excitation
becomes excessively pronounced, resulting in all regions exhibiting excitatory activities
exceeding 100 Hz, a level deemed excessively high and potentially related to paroxysmal
activity and seizure dynamics. However, the model lacks precision when dealing with high-
firing-rate activity and lacks an explicit mechanism for transitioning between high- and
low-activity states. The parameter ae introduces a bifurcation effect, specifically impacting
the mean results as they fluctuate between higher and lower values at ae = −10. This effect
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is distinct from the bifurcation observed with parameters be and g, which occur at higher
values of be.
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Figure 5. Parameter exploration for global coupling and spike-frequency adaptation when modu-
lating the subthreshold adaptation conductance, ae. The other parameters are as follows: wNoise:
1.0 × 10−4, speed: 3.0, τw: 417, cFe,e : 0.5 × 10−3, cFe,i : 0.0, cFi,e : 0.5 × 10−3, cFi,i : 0.0.

Furthermore, increasing the value of ae leads to several outcomes, including a reduc-
tion in firing rates, decreased variability, diminished impact of parameter be, a decrease in
the dominance of certain frequency components, and an increase in the correlation between
different regions.

3.2.4. The Effects of Stimulating External Excitatory and Inhibitory Populations

As depicted in Figure 6, in the context of the model’s dynamics, stimulating the
excitatory population leads to a shift in mean activity levels, causing transitions both
upward and downward, while concurrently reducing the correlation with the structural
connectivity (SC). Conversely, stimulating the inhibitory population results in an increase in
the mean excitatory firing rate and a decrease in the global spectral frequency. It is important
to note that the excitation of both the excitatory and inhibitory neuronal populations
collectively influences the maximum peak of variance within the excitatory population.
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Figure 6. Parameter exploration for global coupling and spike-frequency adaptation in the context of
different external excitatory inputs. The other parameters are as follows: wNoise: 1.0 × 10−4, speed:
3.0, τw: 417, ae: 0.0.

3.2.5. Pathology and the Effect of Modulating the Propagation Speed of Action Potentials
through the Connectome

One intriguing aspect of mean-field models obtained through biophysical approaches
is their potential utility in identifying abnormal patterns or irregularities associated with
pathologies. The TVB-AdEx could potentially be used to investigate seizure activity related
to epilepsy, for instance, due to the hyperactive or hypersynchronized states of the model [9]
as the dynamical landscape of the model comprises a pathological fixed point around
190 Hz [10]. This is a point where neurons fire directly after their refractory period. The
vast parameter sweep can be used to chart the landscape and find the conditions under
which the mean-fields of the network settle at this pathological fixed point. The occurrence
of reaching this fixed point can be localized by examining the conditions for a jump in the
dynamics to high-frequency activity. Disconnected models and models with a lower global
coupling have a higher probability of reaching this fixed point [10]. It is to be expected that
the fixed point is less likely to be reached if the coupling is stronger.

When examining the effects of modulating the speed of action potential propagation
through the connectome, it becomes apparent that when the speed attains a value of
1.0 m/s, particular regions display varying probabilities to visit the paroxysmal fixed
point and display a high-firing-rate activity exceeding 100 Hz. This observation is visually
depicted in Figure 7. When quantifying the instances in which a high firing rate is observed
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exclusively in single regions, we observe the following: The left parahippocampal region
visits the paroxysmal fixed point for all 16,384 parameter combinations when the speed
attains a value of 1.0 m/s. Furthermore, the subsequent four maximum counts are recorded:
6500 occurrences for the left entorhinal region, 3201 occurrences for the left inferiorparietal
region, 1866 occurrences for the right parahippocampal region, and 830 occurrences for
the right entorhinal region. Intriguingly, the left parahippocampal region stands out with
the highest input weights and has the strongest connection with the left entorhinal region.
This observation may suggest that highly connected regions of the model are implicated
in the generation of simulated epileptic seizures. This specific observation is only found
when the speed property of the connectome, which globally influences the connections
between regions, is low and affirms the assumption that less connected brains have a higher
probability of reaching the pathological fixed point.
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Figure 7. Time-series of the excitatory population firing rate for each brain region when action
potential velocity is equal to 1 m/s and g: 0.4, be: 86, wNoise: 1× 10−4, τw: 417, ae: 0.0, cFe,e : 0.5× 10−3,
cFe,i : 0.0, cFi,e : 0.5 × 10−3, cFi,i : 0.0.

Apparently, the impact of speed is not significant unless it falls below or exceeds
the value of 1.0 m/s, as displayed in Figure 8, where the coupling and spike-frequency
adaptation are each modulated with a different value for speed. These results indicate that
only for a speed of 1.0 m/s, is the maximum and variance in firing rates for both excitatory
and inhibitory populations is maximal. When the speed increases, the firing rate does not
exceed 20 Hz, which is similar to healthy brain dynamics. The first two graphs, which show
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the mean firing rate for both populations of the column labeled "speed :1.0", also suggest
that not all regions demonstrate an inclination to reach such elevated firing rates.

0.0

68.57

120.0
speed :1.0

b

speed :3.0 speed :5.0 speed :7.0

0.0

68.57

120.0

0.0

68.57

120.0

0.0

68.57

120.0

b e
b e

0.0

68.57

120.0

b e
b e

0.0

68.57

120.0

0.0

68.57

120.0

b e

0.2 0.6 0.9
g

0.0

68.57

120.0

0.2 0.6 0.9
g

0.2 0.6 0.9
g

0.2 0.6 0.9
g

0.0

2.5

5.0

e
x
ci

ta
to

ry
m

e
a
n

fi
ri

n
g
 r

a
te

(H
z)

0

10

20

in
h
ib

it
o
ry

m
e
a
n

fi
ri

n
g
 r

a
te

(H
z)

0

1

2

e
x
ci

ta
to

ry
v
a
ri

a
n
ce

fi
ri

n
g
 r

a
te

(H
z)

2.0

3.5

5.0

in
h
ib

it
o
ry

v
a
ri

a
n
ce

fi
ri

n
g
 r

a
te

(H
z)

5.0

12.5

20.0

e
x
ci

ta
to

ry
m

a
x
im

u
m

fi
ri

n
g
 r

a
te

(H
z)

20

35

50

in
h
ib

it
o
ry

m
a
x
im

u
m

fi
ri

n
g
 r

a
te

(H
z)

0.0

7.5

15.0

e
x
ci

ta
to

ry
d
o
m

in
a
n
t

fr
e
q
u
e
n
cy

(H
z)

0

10

20

in
h
ib

it
o
ry

d
o
m

in
a
n
t

fr
e
q
u
e
n
cy

(H
z)

b e
e

b e

Figure 8. Parameter exploration for coupling and spike-frequency adaptation of excitatory neurons
when action potential propagation speed is modulated. The graphs depicted in the [speed: 1.0]
column indicate divergent behavior characterized by significantly higher firing rates compared to the
other columns. The other parameters have the following values: wNoise: 1.0 × 10−4, τw: 417, ae: 0.0,
cFe,e : 0.3 × 10−3, cFe,i : 0.0, cFi,e : 0.3 × 10−3, cFi,i : 0.0.

3.3. Performance

In a previous study, the scaling relation between a CPU and GPU implementations
was already performed [22]. The reported CPU implementation also makes use of the
TVB-numba backend (an open-source Just-In-Time compiler for Python), but implements
the Montbrio–Paxin–Rosin model [33], of which the scaling results are comparable to the
TVB-AdEx CPU implementation. In this section, we report the execution time for the GPU
simulation and analysis for the AdEx model only.

Strong and weak scaling are concepts used to evaluate the efficiency and performance
of parallel computing systems. Strong scaling measures how well the application performs
as the number of processors is increased while keeping the problem size fixed. Weak
scaling assesses the performance as both the problem size and the number of processors
are increased proportionally. The execution time analysis, plotted in Figure 9, indicates
linear results for strong and weak scaling in relation to doubling the number of GPUs. The
first graph displays the scaling behaviour for the simulation part, for which the overall



Appl. Sci. 2024, 14, 2211 17 of 21

execution time remains under 600 s. There is a slight decrease in execution time when
strong scaling is applied to the simulation part of the framework. This is due to the fact
that the GPU is already optimal when fully occupied, making use of many threads to hide
memory latency. Adding more GPUs and dividing the load makes the execution relatively
less efficient because of a lesser thread count per GPU to hide latency.

10,000

6,000

8,000

4,000

2,000

Figure 9. Scaling resources of strong and weak scaling results for the simulation and analysis parts of
the framework, doubling the number of resources. The x-axis displays the number of nodes, each
equipped with four GPUs and CPUs. The results are obtained on the Juwels Booster cluster located
at the Forschungszentrum Jülich.

The second graph shows the execution time for the analysis part of the framework,
which is conducted on the CPUs of the nodes. As expected, the analysis part benefits
greatly from adding more resources, as run-time diminishes by half every time resources
are doubled. The weak scaling indicates that the execution time for the analysis, which is
the bottleneck of the framework, remains at a constant of approximately 10,000 s.

The temporal buffer maintains a record of the model states throughout the progression
of a TVB simulation, incorporating signal propagation delays. The size of the temporal
buffer is determined by the product of the number of states, the maximum length of
the connectome, and the number of brain regions. Consequently, the temporal buffer
constitutes the primary contributor to the GPU’s memory footprint, rendering the GPU’s
scalability and maximum number of parameters contingent upon either the number of
model states or the size of the connectome. Table 4 reports the memory utilization and
number of concurrent unique TVB simulations for a single GPU in relation to the number of
nodes as depicted in the scaling plots. The memory utilization for the weak scaling remains
constant at 36,330 GB. The minimal simulation quantity consists of two instances of TVB,
necessitating a memory allocation of 360 MB on the GPU. A CUDA device possessing a
compute capability of 6.1 or higher, along with a memory capacity exceeding 360 MB, will
have the capability to execute a concurrent set of TVB simulations.

The maximum number of resources of the cluster utilized for simulations is 384 nodes
(out of 936 nodes), whereby each has four GPUs, totalling 1536 GPUs. This amount of
resources enabled a parameter exploration of 25,165,824 concurrent TVB instances, each
running simulations with different sets of parameters. The execution time for handling
such a vast number of instances, encompassing both the simulation and analysis phases,
remains well below the thresholds of 530 s and 10,000 s, respectively.
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4. Discussion

In this work, we report the GPU implementation of the TVB-AdEx, adaptive expo-
nential integrate-and-fire (AdEx) mean-field models adapted to The Virtual Brain (TVB)
environment, previously used in studies on consciousness, linking mechanisms operating
at microscopic scales to global brain dynamics. We explore the potential enhancements
achievable through the utilization of MPI for vast GPU cluster parallelization and show
the possibilities of increasing computational resources for complex brain models. The
data generated from numerous parameter combinations can become overwhelming. We
demonstrate that by conducting the analysis directly and organizing the outcomes in a
database format, this framework enables oversight and becomes highly reusable. Further-
more, its modular architecture allows users to incorporate additional mean-field models for
distributed processing across a compute cluster, especially for resource-intensive analyses.

Results on previously implemented models in the GPU framework, such as the Ku-
ramoto [34], Wong-Wang [35], the Epileptor [36], and Montbrio–Paxin–9–Rosin [33], show-
ing performant behaviour, have been previously reported [22]. With this work, we go
one step further by providing a strategy to address more complex models, like the AdEx
mean-field model, which can largely benefit from optimization of GPUs. The capability
to compare the simulated output with (dynamical) functional connectivity renders this
framework highly suitable, for instance, in the creation of virtual brain twins. These meth-
ods endow users with the capacity to discern connections between externally acquired
data, whether empirical or simulated neuroimaging data like EEG, or even an externally
obtained BOLD signal through the utilization of the GPU BOLD kernel.

As documented in [10], the multi-node implementation employing MPI, for the pur-
pose of exploring a constrained parameter space in this model, allocated all unique pa-
rameter combinations or work-items to a single core out of the 128 cores available on the
JUSUF supercomputer in Jülich, taking roughly 6 min of run-time for 5 s of simulated
brain time. The GPU TVB-AdEx model takes about 8 min to compute 5 s of biological time
for 16,384 work-items concurrently, increasing the resolution of the parameter space by
128 times for the simulation part of the framework. Upon scrutinizing the scalability of
the implemented analysis tools, it becomes evident that this will also potentially benefit
from a GPU implementation. This is exemplified by the observation that doubling the
computational resources results in a reduction in run-time by half. Such an implementa-
tion would be well suited for the embarrassingly parallel characteristics of the analysis
pipelines, accelerating the reconnaissance of the parameter space of this and other models
even further. Plus, the same GPU pipelines could be equally useful for the rapid anal-
ysis of electroencephalography (EEG) and other time-series data. This is a priority for
future research.

The Juwels Booster cluster at the Jülich Forschungszentrum has a total of 936 nodes.
This substantial resource pool allows for the theoretical exploration of parameter spaces
encompassing a staggering 61,341,696 possible configurations, all within a time-frame com-
parable to our current execution times. These impressive computational resources usher
in a new era, one in which every single parameter of the model can be comprehensively
examined, leaving no aspect unexplored. However, it is worth noting that new challenges
and limitations emerge in this expanded landscape. For instance, the amount of memory re-
quired to store the vast amounts of information for plotting and analysis becomes a crucial
consideration, i.e., the table which stores 65,536 rows (unique simulations) × 607 columns
(analysis entries)—the results for a single node—requires 301 megabytes. If the time-series
resulting from the 65,536 TVB simulations over 50,000 steps are to be preserved, the ag-
gregate storage demand would escalate to 139.28 gigabytes. For a singular computational
node, the corresponding memory requirement is estimated at 139.58 gigabytes. Extrapo-
lating these to encompass all 984 nodes in use, the cumulative memory demand reaches
134 terabytes.

The sheer volume of data generated will necessitate more sophisticated methods of
exploration and analysis, surpassing the capacity of individuals needed to manage it effec-
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tively. In this regard, the utilization of specialized tools becomes pressing. One such tool
that holds promise in navigating these immense data-sets is “Learning to Learn” (L2L) [37].
This automated machine learning framework is purpose-built for high-performance com-
puting environments and is adept at employing gradient or evolutionary strategies to
traverse expansive data generated by our framework. Furthermore, the HPC framework
for TVB can serve as an initial step in the process of mapping the intricate properties of
the parameter space. These preliminary insights can then be leveraged by Learning to
Learn to intelligently identify and elucidate intriguing patterns within this expansive and
complex space.

In this work, we reported our HPC implementations of multi-scale brain model
simulation and analysis toolkits, taking a step in the direction of creating a complete
workflow specifically designed to address metrics related to transitions in brain dynamics
associated with varying degrees of consciousness. Thus, this comprehensive simulation
and analysis framework distinguishes itself as a unique and valuable tool for advancing
the development of virtual brain twins, not only within the realm of theoretical research,
but also in the context of personalized clinical investigations for epilepsy, sleep, anesthesia,
and disorders of consciousness.
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