Hauptseite > Publikationsdatenbank > Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases > print |
001 | 1024532 | ||
005 | 20250203103128.0 | ||
024 | 7 | _ | |a 10.3389/fchem.2022.1059593 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-02219 |2 datacite_doi |
024 | 7 | _ | |a 36700074 |2 pmid |
024 | 7 | _ | |a WOS:000921373000001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02219 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Oliva, Francesco |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases |
260 | _ | _ | |a Lausanne |c 2023 |b Frontiers Media |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712646353_29216 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The seamless integration of human disease-related mutation data into proteinstructures is an essential component of any attempt to correctly assess theimpact of the mutation. The key step preliminary to any structural modelling isthe identification of the isoforms onto which mutations should be mapped dueto there being several functionally different protein isoforms from the samegene. To handle large sets of data coming from omics techniques, thischallenging task needs to be automatized. Here we present the MoNvIso(Modelling eNvironment for Isoforms) code, which identifies the most usefulisoform for computational modelling, balancing the coverage of mutations ofinterest and the availability of templates to build a structural model of both thewild-type isoform and the related variants. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Musiani, Francesco |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Giorgetti, Alejandro |0 P:(DE-Juel1)165199 |b 2 |u fzj |
700 | 1 | _ | |a De Rubeis, Silvia |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Sorokina, Oksana |b 4 |
700 | 1 | _ | |a Armstrong, Douglas J. |b 5 |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 6 |u fzj |
700 | 1 | _ | |a Ruggerone, Paolo |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.3389/fchem.2022.1059593 |g Vol. 10, p. 1059593 |0 PERI:(DE-600)2711776-5 |p 1059593 |t Frontiers in Chemistry |v 10 |y 2023 |x 2296-2646 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024532/files/fchem-10-1059593.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024532/files/fchem-10-1059593.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024532/files/fchem-10-1059593.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024532/files/fchem-10-1059593.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024532/files/fchem-10-1059593.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1024532 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)165199 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)145614 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-19 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT CHEM : 2022 |d 2023-08-19 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FRONT CHEM : 2022 |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-13T10:38:39Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-13T10:38:39Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-19 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-19 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2021-05-13T10:38:39Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-19 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|