001024564 001__ 1024564
001024564 005__ 20240711113526.0
001024564 0247_ $$2doi$$a10.1088/1402-4896/ac326c
001024564 0247_ $$2ISSN$$a0031-8949
001024564 0247_ $$2ISSN$$a1402-4896
001024564 0247_ $$2WOS$$aWOS:000714220400001
001024564 037__ $$aFZJ-2024-02240
001024564 041__ $$aEnglish
001024564 082__ $$a530
001024564 1001_ $$0P:(DE-Juel1)172933$$aGago, M.$$b0$$eCorresponding author
001024564 245__ $$aSynergistic and separate effects of plasma and transient heat loads on the microstructure and physical properties of ITER-grade tungsten
001024564 260__ $$aStockholm$$bThe Royal Swedish Academy of Sciences$$c2021
001024564 3367_ $$2DRIVER$$aarticle
001024564 3367_ $$2DataCite$$aOutput Types/Journal article
001024564 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714568461_3375
001024564 3367_ $$2BibTeX$$aARTICLE
001024564 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024564 3367_ $$00$$2EndNote$$aJournal Article
001024564 520__ $$aOnce ITER commences full power operation, the ITER divertor will be exposed to high thermal and particle loads. Tungsten was chosen as plasma facing material for the ITER divertor. It is, therefore, of the utmost importance to understand the behavior of ITER-grade tungsten under conditions similar to those it will have to withstand inside the reactor. In this study, ITER-grade tungsten samples were exposed to stationary D/He(6%) plasma and ELM-like transient heat loads in the linear plasma device PSI-2. The effects of each kind of load was first studied separately, and the synergistic effects obtained when exposed to both loads simultaneously were then analyzed. Additionally, the hardness of a recrystallized tungsten sample after exposure to simultaneous loads was tested via nanoindentation. The results indicate that hydrogen and helium embrittlement worsens the cracking behavior of the material when exposed to the simultaneous loads compared to only heat loads. Additionally, bubbles of up to 1 μm are formed under the surface due to the synergistic effects at the highest heat load. The nanoindentation tests showed that plasma and heat loads increase the hardness of the material by 39%, but only plasma loads appeared to have no effect on it.
001024564 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
001024564 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024564 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001024564 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
001024564 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b1
001024564 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b2
001024564 7001_ $$0P:(DE-Juel1)129811$$aWirtz, M.$$b3
001024564 773__ $$0PERI:(DE-600)1477351-X$$a10.1088/1402-4896/ac326c$$gVol. 96, no. 12, p. 124052 -$$n12$$p124052 -$$tPhysica scripta$$v96$$x0031-8949$$y2021
001024564 8564_ $$uhttps://juser.fz-juelich.de/record/1024564/files/Gago_2021_Phys._Scr._96_124052.pdf$$yRestricted
001024564 8564_ $$uhttps://juser.fz-juelich.de/record/1024564/files/Gago_2021_Phys._Scr._96_124052.gif?subformat=icon$$xicon$$yRestricted
001024564 8564_ $$uhttps://juser.fz-juelich.de/record/1024564/files/Gago_2021_Phys._Scr._96_124052.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024564 8564_ $$uhttps://juser.fz-juelich.de/record/1024564/files/Gago_2021_Phys._Scr._96_124052.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024564 8564_ $$uhttps://juser.fz-juelich.de/record/1024564/files/Gago_2021_Phys._Scr._96_124052.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024564 909CO $$ooai:juser.fz-juelich.de:1024564$$pVDB
001024564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172933$$aForschungszentrum Jülich$$b0$$kFZJ
001024564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b1$$kFZJ
001024564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b2$$kFZJ
001024564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b3$$kFZJ
001024564 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
001024564 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger
001024564 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001024564 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001024564 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001024564 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001024564 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001024564 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001024564 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS SCRIPTA : 2022$$d2023-10-21
001024564 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001024564 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001024564 920__ $$lyes
001024564 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
001024564 980__ $$ajournal
001024564 980__ $$aVDB
001024564 980__ $$aI:(DE-Juel1)IEK-4-20101013
001024564 980__ $$aUNRESTRICTED
001024564 981__ $$aI:(DE-Juel1)IFN-1-20101013