001     1024565
005     20250203103131.0
024 7 _ |a 10.1016/j.etran.2023.100255
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02241
|2 datacite_doi
024 7 _ |a WOS:001014614600001
|2 WOS
037 _ _ |a FZJ-2024-02241
082 _ _ |a 400
100 1 _ |a Yang, Sijia
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Fast screening of lithium-ion batteries for second use with pack-level testing and machine learning
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712751111_24403
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fast and accurate screening of retired lithium-ion batteries is critical to an efficient and reliable second use with improved performance consistency, contributing to the sustainability of renewable energy sources. However, time-consuming testing, representative criteria extraction, and large module-to-module inconsistencies at the end of first life all pose great challenges for fast screening. This paper proposes a fast screening approach with pack-level testing and machine learning to evaluate and classify module-level aging, where disassembly of the battery pack and individual testing of modules are not required. Dynamic characteristic-based criteria are designed to extract the comprehensive performance of the retired modules, making the approach applicable for battery packs with module state-of-charge inconsistencies up to 30%. Adaptive affinity propagation clustering is utilized to classify the modules and further accelerate the screening progress. The proposed approach is implemented and validated by conducting pack-level and module-level experiments with a retired battery pack consisting of 95 modules connected in series. The screening time is reduced by at least 50% compared with approaches that require module-level testing. Reasonable static performance consistency and better dynamic performance consistency, as well as higher screening stability, are achieved, with average overall performance improvements of 18.94%, 4.83% and 34.41% compared with the three benchmarks, respectively. Its adaptability to a larger current rate shows promise for large-scale applications in second-use screening.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a BMBF 03XP0334 - Model2Life- Modellbasierte Systemauslegung für 2nd-Life-Nutzungsszenarien von mobilen Batteriesystemen (03XP0334)
|0 G:(BMBF)03XP0334
|c 03XP0334
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Caiping
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Jiang, Jiuchun
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Weige
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chen, Haoze
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jiang, Yan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 6
700 1 _ |a Li, Weihan
|0 0000-0002-2916-3968
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.etran.2023.100255
|g Vol. 17, p. 100255 -
|0 PERI:(DE-600)2981331-1
|p 100255 -
|t eTransportation
|v 17
|y 2023
|x 2590-1168
856 4 _ |y Published on 2023-05-14. Available in OpenAccess from 2024-05-14.
|u https://juser.fz-juelich.de/record/1024565/files/Manuscript-proof-clean.pdf
856 4 _ |y Published on 2023-05-14. Available in OpenAccess from 2024-05-14.
|x icon
|u https://juser.fz-juelich.de/record/1024565/files/Manuscript-proof-clean.gif?subformat=icon
856 4 _ |y Published on 2023-05-14. Available in OpenAccess from 2024-05-14.
|x icon-1440
|u https://juser.fz-juelich.de/record/1024565/files/Manuscript-proof-clean.jpg?subformat=icon-1440
856 4 _ |y Published on 2023-05-14. Available in OpenAccess from 2024-05-14.
|x icon-180
|u https://juser.fz-juelich.de/record/1024565/files/Manuscript-proof-clean.jpg?subformat=icon-180
856 4 _ |y Published on 2023-05-14. Available in OpenAccess from 2024-05-14.
|x icon-640
|u https://juser.fz-juelich.de/record/1024565/files/Manuscript-proof-clean.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024565
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ETRANSPORTATION : 2022
|d 2023-10-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ETRANSPORTATION : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21