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Abstract 

Fast and accurate screening of retired lithium-ion batteries is critical to an efficient and reliable 

second use with improved performance consistency, contributing to the sustainability of renewable 

energy sources. However, time-consuming testing, representative criteria extraction, and large module-

to-module inconsistencies at the end of first life all pose great challenges for fast screening. This paper 

proposes a fast screening approach with pack-level testing and machine learning to evaluate and 

classify module-level aging, where disassembly of the battery pack and individual testing of modules 

are not required. Dynamic characteristic-based criteria are designed to extract the comprehensive 

performance of the retired modules, making the approach applicable for battery packs with module 

state-of-charge inconsistencies up to 30%. Adaptive affinity propagation clustering is utilized to 

classify the modules and further accelerate the screening progress. The proposed approach is 

implemented and validated by conducting pack-level and module-level experiments with a retired 

battery pack consisting of 95 modules connected in series. The screening time is reduced by at least 

50% compared with approaches that require module-level testing. Reasonable static performance 

consistency and better dynamic performance consistency, as well as higher screening stability, are 

achieved, with average overall performance improvements of 18.94%, 4.83% and 34.41% compared 

with the three benchmarks, respectively. Its adaptability to a larger current rate shows promise for 

large-scale applications in second-use screening. 
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1. Introduction 

Lithium-ion batteries (LIBs), the main pillar of energy storage technology for electric vehicles 

(EVs), suffer from performance degradation during usage and storage in terms of capacity and power 

[1]. Typically, they reach their end-of-life when their remaining capacity reaches 80% of the nominal 

capacity [2] or their internal resistance reaches 200% of that of pristine batteries [3]. The retired EV 

batteries reached 14 GWh/year in 2020 globally, and this figure is expected to rise 10-fold by 2025 

and surpass 900 GWh/year by 2030, which will exceed the current annual global battery production 

[4–6]. As the EV holdings continue to grow worldwide - potentially hitting 245 million by 2030 [7] - 

there is no doubt that a tidal wave of retired LIBs is on the horizon.  

The second use of EV batteries plays an important role in the sustainability of new energy vehicles. 

It is a promising path to increase the usage time of the batteries, thereby decreasing the total lifetime 

costs and increasing resource utilization [8]. Instead of recycling these retired EV batteries directly at 

the material level, it is more economical and ecological to reuse them [9], as most of them are still 

adequate in their second life for other less-demanding applications in the second life, such as electric 

motorcycles, mobility e-scooters and stationary battery storage systems [10–12]. In fact, over 70% of 

the batteries may still reserve more than 80% of their nominal capacity [13,14]. However, the internal 

aging states of these batteries may be varied due to different aging mechanisms in their first life [1]. 

Such underlying inconsistencies can induce different aging speeds of the LIBs in the second life and 

further exacerbate the degradation of the battery packs and even cause safety issues [15,16]. Therefore, 

it is necessary and critical to screen the retired batteries with good consistency for the reliable operation 

of EV batteries in second use and for the sustainable development of the EV industry. 

1.1. Literature review 

Unfortunately, there are currently no uniform screening criteria or industrial standards for retired 

LIB packs [17]. Generally, the battery packs are disassembled into modules or cells to evaluate the 

condition of the batteries [8], which can be conducted at different scales with corresponding screening 

criteria [18]. Inner criteria, like morphological changes in electrodes [19] or electrochemical 

parameters [20], while straightforwardly capturing the aging, requires special equipment and domain 

expertise for the measurement, which is costly to apply in large-scale screening. On the other hand, 
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outer criteria are much easier to implement, including observational check [14,21,22], weight [23,24], 

self-discharge rate [25,26], thermal behavior [27], capacity [27–29], internal resistance [27,28,30], and 

terminal voltage at a certain state-of-charge (SOC) [22,27,31], etc.  

These outer criteria can be further divided into two categories: static and dynamic characteristics-

based [23,32]. Static characteristic-based criteria are state points that only reflect the performance in 

one SOC at a specific aging degree, whereas the dynamic characteristic-based criteria portray the 

performance during battery operation over a time period or a SOC interval. Nominal capacity is an 

example of static criteria. The voltage-capacity curve, in contrast, is a dynamic criterion. Inarguably, 

dynamic characteristics-based criteria provide more insights into the internal states of the batteries than 

static characteristics-based criteria. After all, despite having similar nominal capacities, the internal 

aging states of two aged cells can be varied due to different aging paths in their first life [1,33].  

To improve performance consistency for the second use, outer criteria are often used in 

combination [18,34]. For instance, capacity, pulse discharge voltage, charge transfer resistance and 

lithium-ion diffusion coefficient are jointly utilized in Ref. [14]. More criteria generally mean better 

performance consistency and higher screening accuracy, but the problem is quite obvious – low 

efficiency, as most of these criteria are measured at the module/cell level, which implies that more 

labor is demanded to disassemble the battery pack into modules/cells for individual testing, inevitably 

slowing down the second use progress of LIBs [8]. As a result, many researchers have attempted to 

shorten the screening time while balancing the accuracy. Basically, there are four options. 

The first way is to find some highly relevant features to characterize these module-/cell-level 

criteria based on a partial testing process instead of the complete process. Incremental capacity (IC) 

curves, whose features are assumed to be accessible in partial voltage windows, are commonly 

employed to represent capacity [35,36]. For example, the peak height of the IC curve [37] and the 

coordinates of the three IC peaks [38]. The latter further reduced the feature extraction time by 

increasing the charging current rate (C-rate) from C/10 to C/2. Considering that only part of the 

measurement process is involved, this is theoretically possible for the pack-level testing application. 

However, these methods normally extract the representative features based on partial voltage segments 

directly intercepted from the complete voltage curve starting from 0% SOC, while neglecting the 

reality that the initial charging SOC is usually non-zero due to the existence of SOC inconsistency. 

This may be different from the voltage curve of 0% SOC charging [39], which may affect their feature 
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extraction and challenge the applications of these methods. Moreover, large module-to-module 

inconsistencies at the end of the first life make the extraction of the representative features for each 

module more difficult [40], and in some cases, may not even be extractable. 

The second alternative is to make greater use of dynamic characteristic-based criteria, which are 

likely to reduce the number of criteria to be measured while maintaining accuracy, as they can capture 

the comprehensive performance of the batteries mentioned earlier. Jiang et al. [28] improved screening 

performance consistency by adding a criterion depicting the loss of active material. Luo et al. [34] 

employed four criteria extracted from the short-time pulse voltage curve and electrochemical 

impedance spectroscopy (EIS) model, but it still took around 20 minutes to measure the criteria for 

one cell. Zhang et al. [41,42] used two dynamic characteristic-based criteria extracted from partial 

charging voltage curves of the cells. Whilst these methods have produced reasonably good results, 

most of them still require individual testing of the batteries and rarely discuss the voltage consistency 

of the batteries during operation after the screening. 

Another idea to improve the screening efficiency is provided by Lai et al. [43], in which they 

charged the entire battery pack to avoid testing the modules individually, saving a great deal of testing 

time and resources. They pre-trained a support vector machine model to estimate the battery capacity 

based on the supplemental charging voltage and used an improved k-means algorithm for screening. 

The results are encouraging, but they only verified it on a simulation model, which may differ from 

the practical situation where large module-to-module inconsistencies exist.  

The last choice is to adopt unsupervised learning rather than supervised learning, where the latter 

requires plenty of samples for model training, which is time-consuming when acquiring the screening 

criteria. The screening time for 176 batteries using fuzzy c-means is only about 13% of that of the 

supervised learning method [42]. Although unsupervised learning algorithms are faster for screening, 

the initialization of the centroids is rather random for the algorithms currently adopted in the literature 

[28,31,42], which is likely to result in less stable clustering outputs. 

In summary, existing studies generally use the data obtained from module/cell-level testing to 

classify the modules/cells, suggesting the necessity of complete disassembly of the battery pack for 

individual testing, while methods to classify the module-level aging using data obtained from practical 

pack-level testing have not been reported. In addition, little research for fast screening has been 

conducted on pack-level testing with large module-to-module inconsistencies. There is a possibility 



Pre-print version 

 5 / 33 

 

that representative features used for classification in the state-of-the-art literature may not be 

extractable for each module in LIB packs with large module-to-module inconsistencies, causing the 

existing methods to be inapplicable. Finally, as most unsupervised learning algorithms have fairly 

random centroid initialization, it is imperative to investigate the incorporation of unsupervised learning 

with stability. 

1.2. Contributions of the work 

To address the above research gaps and accelerate the second-use progress of EV batteries, a fast 

and accurate screening performed by pack-level testing is proposed for the evaluation and 

classification of module-level aging. The main contributions of this work are as follows: 

1) Only pack-level testing is involved for screening, which means that this approach is time- and 

energy-efficient, as there is no need to test the batteries individually. 

2) Dynamic characteristic-based criteria are designed to cover the comprehensive performance of 

retired modules, making the approach applicable for battery packs with large module-to-module SOC 

inconsistencies of up to 30%.  

3) Adaptive affinity propagation clustering is applied to classify the modules and further save 

time from an algorithmic perspective, achieving stable and accurate screening without pre-training the 

model. 

4)  The verification is conducted on the real testing data of a 5 parallel-95 series (5P95S) battery 

pack. The static and dynamic performance consistency is evaluated and compared with three 

benchmarks after the screening. 

2. Methodology 

2.1. Dynamic characteristic-based screening principle 

As mentioned previously, screening based on static-characteristic criteria may be 

incomprehensive to reflect the battery performance. Therefore, we propose a machine learning 

screening approach that enables fast, accurate and stable screening using dynamic characteristic-based 

criteria extracted from pack-level testing. The basic idea is to extract the distinguishing criteria that 

the batteries exhibit during operation. The framework of our proposed approach is shown in Fig.1. 

Here we are dealing with the LIB pack with a large number of modules in series, in our case, 95 

modules in series. The modules were considered to be the minimum screening unit in this study since 
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screening retired batteries at the module level balances the economics of battery disassembly with the 

flexibility of regrouping [18]. The screening data are generated from the modules' voltage data 

obtained from the pack-level testing. Both charge and discharge processes are included because the 

terminal voltage of the batteries may behave differently due to the direction of polarization. Dynamic 

characteristic-based criteria, consisting of four criteria of voltage proportion and two criteria of phase 

transformation reactions number, are extracted from the module terminal voltage and the 

corresponding IC curves from the pack-level testing. We employ the adaptive affinity propagation 

algorithm to cluster the data, as it does not require model pre-training, further improving the screening 

efficiency from the algorithmic perspective. The consistency performance of the screened modules is 

evaluated and validated with the module-level and pack-level experiments. 
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Fig.1. The framework of the proposed screening approach for retired LIBs. 

The cyclic aging of the LIB packs is affected by many extrinsic factors, including temperature, C-

rate, depth-of-discharge, mechanical stress, storage time and operating time [44]. These extrinsic 

factors, combined with the intrinsic factors, exert varied effects on the batteries and will result in 

inconsistencies among them. The SOC interval is a dominant factor [37], and it is also a consequence 

of degradation. Therefore, we extract the dynamic criteria characterizing the SOC intervals during 

battery operation based on the modules' terminal voltage. As the SOC is related to the terminal voltage, 

we calculate the voltage proportion that the low and high voltage of the module accounts for in the 
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charging and discharging operations of the battery pack to denote the low and high SOC intervals. The 

peaks observed on the IC curve of the LiFePO4 battery, corresponding to the staging in the graphite of 

the negative electrode, take place mainly in the full-cell voltage plateau of 3.20V-3.40V. So we chose 

voltage proportions below 3.20V and above 3.40V of the module during the pack charge-discharge 

process as four criteria, defined as the Vlchg, Vhchg, Vldch and Vhdch for LiFePO4 battery, which can be 

computed by Eq.(1). The criteria are extracted from the modules' voltages in the pack-level testing, 

whose curves are shown in Fig. 2(a) and (b). The subscripts chg and dch indicate whether the criteria 

are extracted from charge or discharge. 
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/
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Where △V<3.20V and △V>3.40V denote the voltage changes of module index im when the terminal 

voltage is below 3.20V and above 3.40V, respectively. The △Vinterval is the total voltage change 

measured at the end of the charging or discharging process. These variables are illustrated in Fig.2 (c). 

When a battery is operated in the low SOC interval, the value of Vlchg and Vldch will be larger compared 

with those operating in the middle SOC interval, as the voltage plate of the LiFePO4 battery results in 

little voltage change. Vlchg, Vhchg, Vldch and Vhdch are, therefore, four indicators that provide a good 

description of the SOC interval. 

Vlch

Vhch

Vldch

Vhdc h

(b)(a) (c)
 

Fig. 2. Voltage proportion criteria extracted from the modules' voltage obtained from pack-level testing during 

(a) charging, (b) discharging, and (c) an illustrative example of the variables used to calculate Vlchg. (Note: 

only a small amount of module voltage has been plotted for clarity of presentation.) 

However, the terminal voltage proportion alone is far from sufficient. For the main voltage plateau, 

the proposed ICreact criterion, which represents the number of phase transformation reactions 

exhibited at the pack-level testing, i.e., the number of IC peaks, is used to evaluate the inconsistency 

and classify the batteries. The ICreact values for modules with different numbers of IC peaks are 
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suggested in Table 1. Fig.3 (a) and (b) show the IC curves obtained from the module-level and pack-

level testing. During the pack-level testing of the 5P95S battery pack, all modules were tested in the 

pack simultaneously, while the module-level testing was conducted on the 95 modules individually 

(the detailed procedure is described in Section 3), which is why the IC curves displayed in Fig.3 are 

complete at the module level, whereas the IC curves at the pack-level are only partial (inconsistencies 

among the modules cause other modules to reach cut-off condition early).  

 The peak ⑤  during discharge is not as distinguishable as it is during charge (Fig.3(a)). 

Therefore, we only identified peak ② and peak ①. During charge and discharge, we noticed that the 

height of peak ① of some modules varied considerably. As shown by the red line in Fig.3(b), the 

height of peak ① is almost equal to the height of peak ② during discharge, which poses a challenge 

for screening methods based on the peak height of the IC curves. We believe that the dramatic change 

in the height of peak ① may be related to the differences in the polarization process induced by 

different initial SOCs. That is also the reason why we incorporate both charge and discharge directions 

in criteria extraction: to capture comprehensive inconsistency performance. As illustrated in Fig.3 (b), 

the shape and height of peak ① are similar for the two batteries during pack-level charge, but distinct 

differences can be observed during discharge. We found that this was not an exception, and thus, we 

used the relative height with respect to peak ② to identify these modules. If the height of peak ② is 

not twice the height of peak ① during discharge (both peaks are of similar height), then the ICreact 

value for the module exhibiting this performance will be 2. Otherwise, the ICreact value will be 1.5, 

as these modules are likely to display only half of peak ① during the charge at the pack level. The 

ICreact criterion, although based on the IC curve, is not concerned with the exact height of the peaks 

and is, therefore, insensitive to the noise errors introduced by the IC calculation. It is worth mentioning 

that the parameters presented may need to be slightly modified to suit the different battery electrode 

materials, as they have varied voltage characteristics. Yet the essence is the same, that is, to 

characterize the differences reflected by SOC during pack-level operation.  

Table 1 The ICreact values for modules with different numbers of IC peaks. 

Item 
ICreact values 

Charge Discharge 

half-②  half-② 0.5 

complete-② complete-② 1 

complete-② and half-① 

half-② and complete-① or 

complete-② and complete-① 

(② is twice as high as ①) 

1.5 

complete-② and complete-① complete-② and complete-① 2 
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After all the dynamic characteristics-based criteria have been obtained (Eq.(2)), each criterion is 

normalized by centering the data to have a mean zero to aid comparison. The subscripts chg and dch 

indicate whether the criteria are extracted from charge or discharge. 

 [ , , , , , ]dp chg chg chg dch dch dchVl Vh ICreact Vl Vh ICreact    (2) 

(a)

(b)

 

Fig. 3. The IC curves obtained from the module-level and pack-level testing of (a) No.39 battery; and IC 

curves obtained from the pack-level operation of (b) No.8 and No.92 batteries. 

2.2. Adaptive affinity propagation clustering algorithm 

Developed based on the concept of "message passing" between data points, unlike clustering 

algorithms such as k-means or k-medoids, a predetermined or estimated number of clusters is not a 

necessity for affinity propagation (AP) [45]. Adaptive affinity propagation (adAP) was developed by 

Wang et al. [46] to improve preference tuning, the convergence and to eliminate oscillations during 

the iterations in the original AP algorithm. Instead of randomly choosing the centers as an initialization, 

adAP treats all the data points as potential clustering centers (called exemplars), contributing to a more 
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stable result. The main equations are as follows and a detailed description is given in Ref.[46,47]. 

Suppose the dataset is Dn×m = {d1, d2, d3,…, dn}, where di contains m features and n samples. The 

similarity matrix S (Eq.(3)) is an n×n matrix that describes the similarity between di and dj. The 

diagonal of S represents the likelihood of a particular input being an exemplar, known as "preferences", 

and is set as half of the median of the input similarities at the initial. 

 
2

( , )   ( )i jS i j d d i j      (3) 

The responsibility R(i,k) conveys the attraction messages from data point i to candidate exemplar 

point k, indicating how well-suited point k is to serve as the exemplar for point i when taking other 

potential exemplars for point i into account. In turn, the availability A(i,k), sent from candidate 

exemplar point k to point i, reflects how appropriate it would be for point i to choose point k as its 

exemplar, considering the support from other points that point k should be an exemplar. Eq.(4) and (5) 

show the formulas for responsibility and availability, respectively.  
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During the iterative process, Rt and At are updated with Rt-1 and At-1 from the previous iteration 

using the damping factor λ, which is demonstrated in Eq.(6). The preference p is also updated 

adaptively with the current number of exemplars K, i.e., the decrease of p will accelerate until the K 

exemplary decline. This is realized through Eq.(7)-(8), where the p will decrease b×pstep every certain 

iteration if the number of exemplars converges to K. The λ will be increased in steps of 0.05 if 

oscillations occur within the monitoring window. If the λ is larger than 0.85, the p will gradually 

decrease by step pstep until oscillations disappear. 
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stepp p b p     (7) 
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Where b is the counter for each K exemplary converges, pm is the median of the similarity. 

The availabilities and responsibilities are combined together to identify exemplars, displayed as 

Eq.(9). The element with the maximum criterion value C(i,k) will be designated to be an exemplar. 

Elements corresponding to the rows which share the same exemplar are clustered together. The 

iterations are terminated by reaching K=2, so that the lower limit of the preference is obtained. We set 

the maximum number of repetitions to be as large as 50000 to ensure that it will not affect whether the 

algorithm reaches K=2. The minimum number of samples in one cluster is set to 4, suggesting that a 

cluster will be omitted if a cluster contains fewer than 5% of the total sample (95*5%). 

 ( , ) ( , ) ( , )C i k R i k A i k    (9) 

If the dataset Dn×m is divided into K clusters Ci (i = 1,2,…,k), the optimal number of clusters can 

be determined by the silhouette coefficient, which can be calculated as Eq.(10). With Sil(t) for each 

sample, the overall average silhouette Sil for n samples of the dataset can be obtained. The largest 

overall average silhouette indicates the best clustering quality and the optimal cluster number. A series 

of Sil values corresponding to clustering solutions under different cluster numbers are calculated, and 

the optimal clustering is the case where the number of clusters yields the largest Sil.  

 
 
( ) ( )

( )
max ( ), ( )

b t a t
Sil t

a t b t


   (10) 

where a(t) is the average Euclidean distance of sample t of Cj to all other samples in Cj, and b(t) is the 

minimum value of the average Euclidean distance of sample t of Cj to all samples in another cluster Ci 

(i = 1,2,…,k and i≠j). 

3. Experimental 

3.1. Configuration of the retired battery pack 

The LIB pack retired from an electric vehicle with a mileage of 32,500 kilometers that had been 

operating in a southern Chinese city for over three years was used for validation. The pack has not 

been equalized throughout its lifetime. The configuration of the battery pack is 5P95S, with 5 cells 

connected in parallel to form a 5P1S module and 95 modules bolted together in series to form a battery 

pack. The parameters of the 5P1S module are shown in Table 2. 
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Table 2 Specifications of the 5P1S module. 

Item Parameters 

Electrode material LiFePO4-graphite 

Nominal capacity 60Ah 

Nominal energy 18.5Wh 

Weight 1.738kg 

Nominal voltage 3.2V 

End-of-charge voltage 3.65V 

End-of-discharge voltage 2.5V 

 

3.2. Experimental design  

A series of tests were carried out on the battery pack and the modules to determine the 

inconsistency of the modules and to verify the effectiveness of the proposed approach. The experiments 

designed for implementation and validation of the classification as well as the corresponding specific 

testing procedures, are outlined in Fig.4. First, we conducted the pack capacity test to obtain the present 

aging state of the battery pack. The pack capacity test takes much less time to perform than the module 

capacity test that follows, and the testing data is used for classification implementation. Then, we 

designed the capability test at 0.3C, 0.7C, and 1.2C at the pack level to not only acquire a picture of 

the inconsistencies among the modules but also to set the stage for verifying the adaptability of the 

proposed approach under diverse scenarios. Prior to the module-level experiments, the battery pack 

was fully charged at 0.1C until any modules reached the end-of-charge voltage. To evaluate and 

validate the performance consistency of the classification, the battery pack was disassembled into 95 

modules for module-level testing, which continued to be charged individually to their end-of-charge 

voltage at 0.1C to acquire the SOC inconsistency. Modules comprising 5 cells connected in parallel 

were not further disassembled. Finally, we performed the module capacity test on 95 modules 

individually under 0.1C to obtain the voltage-capacity reference values for classification validation. 

The open circuit voltage (OCV)-SOC and charging-based IC of the modules are also derived from this 

test. All data were recorded at 1s time intervals.  



Pre-print version 

 13 / 33 

 

 

Fig. 4. The experiment procedures for implementation and validation of the proposed screening approach. 

Fig.S1 demonstrates the experimental platform composition and the schematic principle diagram. 

For pack-level experiments, a test bench comprised of an Arbin BT2000 testing system, a BMS, and 

a host computer was used, with the battery pack's ambient temperature at roughly 23°C. For both 

current and battery pack voltage, the measurement error was ±0.05% of the full-scale range. The 

voltage precision for module voltage acquisition was ±0.02% of the full-scale range. As for module-

level experiments, an Arbin BT2000 and a Maccor Series 4000 were employed. The Maccor Series 

4000 had a current and voltage accuracy of ±0.05% and ±0.02% of the full-scale range, respectively. 

The module experiments were carried out in a thermal chamber set at 25°C. 

3.3.Performance inconsistency analysis of the retired battery pack 

The pack and module capacity is defined as the last charge capacity measured in the pack capacity 

test and module capacity test, respectively. As a result of module degradation and SOC inconsistency, 

the measured capacity of the battery pack is around 32.90 Ah. Namely, more than 45% of the nominal 

capacity is lost. The maximum and minimum value of module capacity retention is 85.22% and 

73.72%, respectively. The average capacity of the modules is 49.46 Ah (capacity retention: 82.4%), 

with a standard deviation of 1.50 Ah (3%). Despite the small variation in the capacity of these modules, 
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the difference in their dynamic performance is noticeable, which is shown in supplementary Fig.S2 

labeled as without (w/o) screening. The results of the pack C-rate capability test are plotted in Fig.5. 

The capacity or energy efficiency are defined as the capacity or energy of the battery pack discharged 

at a given C-rate divided by the maximum charge capacity or energy of the battery pack. The 0.1C 

charging data is considered to be the maximum value that can be achieved by the battery pack and is 

taken as the denominator when calculating capacity or energy efficiency. As expected, as the C-rate 

increases, both capacity and energy efficiency decrease, indicating large module-to-module 

inconsistencies. The terminal voltages of the modules in the pack capacity test confirm the severe 

inconsistencies in SOC interval. Fig.5 (b) reveals the IC curve of the maximum and minimum voltage 

in the pack under 0.1C charging. The overlap between these two voltages is only around 50mV, which 

may pose a challenge for some methods [42,43] where the prerequisite of small module-to-module 

consistencies have to be met. 

 
(b)(a)

 

Fig. 5. Performance inconsistency analysis of the retired LIB pack: (a) capacity and energy efficiency, (b) 

charging-based IC curves for the maximum and minimum module voltages under 0.1C.  

To further quantify the degree of SOC inconsistency, the modules' operating SOC is also 

calculated, whose equations are given in Supplementary Note S1 (Eq.(S1)-(S3)). The data from the 

pack capacity test, module capacity test and SOC inconsistency recognition test are used to obtain the 

operating SOC. According to Fig. 6 (a) and (b), the range and standard deviation of modules' SOC are 

around 30% and 8.5%. When the battery pack is at 100% SOC, up to 34.74% of the modules have 

more than 10% SOC remaining before they are full. When the battery pack is at 0% SOC, the 

percentage of modules with at least 10% discharged capacity increases to over 90%. Half of them can 

even release above 30% capacity. The distribution of the modules' Δ SOC is demonstrated in Fig.6 (c), 
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whose maximum and minimum values are 72.6% and 61.6%, confirming the large SOC inconsistency.  

(a) (b) (c)
 

Fig. 6. Histograms of the relative frequency of module (a) end-of-charge SOC at pack 100% SOC, (b) end-of-

discharge SOC at pack 0% SOC and (c) Δ SOC in the retired LIB pack. 

4. Results and discussion 

4.1. Comparison of the screening results 

The screening process is based on pack-level testing and the performance consistency of the 

screened modules is evaluated and validated with the module-level and pack-level experiments. To 

verify the effectiveness of the proposed screening approach, dynamic characteristics-based criteria, 

static characteristics-based criteria and random selection approaches are selected as benchmarks for 

comparison. The 5P1S module is considered a minimum screening unit in this study and all 

benchmarks from the literature are recalculated with our 5P95S battery pack data.  

Approach 1: Our proposed approach. The six dynamic characteristics-based criteria for each 

module obtained by Eq.(1) and Table 1 are used as input to the adAP algorithm for classification. 

Approach 2: A quick screening approach based on fuzzy c-means from Ref.[42]. Given that they 

also used two dynamic characteristics-based criteria, namely the gradient and the volatility of a 

symmetrical charging voltage interval near the main phase transformation, they were included for 

comparison. Moreover, they did the screening based on the LiFePO4 batteries, so these features should 

be potentially applicable to our data (also LiFePO4). However, we cannot extract these criteria based 

on the modules' terminal voltage obtained from our pack-level testing data for all the modules due to 

the limited operating range of the module induced by the large module-to-module SOC inconsistencies. 

Hence, for Approach 2, these two criteria are still extracted based on our module-level testing data.  
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Approach 3: Directly capacity screening based on k-means. To verify the merits of dynamic 

characteristics-based criteria, we adopt the static characteristics-based criteria as an alternative 

comparison, in which case the measured module capacity acquired from the module capacity test is 

used as the screening criterion, and then k-means clustering is applied.  

Approach 4: Random selection. Because of its easy-to-implement nature, the random selection 

approach is included, with the quantities of modules per class remaining consistent with the clustering 

results of Approach 1.  

The optimal number of clusters is determined automatically in the adAP algorithm according to 

Eq.(10), which in our case, the algorithm returned a silhouette coefficient of 0.7546, corresponding to 

4 classes. To make the results among different approaches comparable, the number of clusters for 

fuzzy c-means and k-means is equally set to four. We calculate the mean of modules' capacity in each 

classified group and name them in ascending order. In other words, the mean value of the module 

capacity is the smallest in Class 1 and the largest in Class 4. Given that the number of clusters set to 

four may not be the optimal classification for Approach 2 and Approach 3, performance consistency 

results for Approach 1-3 under the different number of cluster settings are provided in Supplementary 

Note S2. 

The performance consistency of the screening results is evaluated from two perspectives: 

static (capacity) and dynamic performance (OCV-SOC, charging-based IC and terminal voltage curve 

during C-rate capability test) within the classified group. The standard deviation varies with the 

magnitude of the samples in the dataset and is not intuitive when comparing data series with different 

means, as is the case for different classification groups. The coefficient of variation (CV) provides a 

good comparison of the degree of variation from one data series to another, even if the means are 

highly different from one another. Therefore, statistical indicators of range and CV were employed for 

both static and dynamic performance to quantify the inconsistency under each classified group, and 

can be computed as follows, 

 
, , , 1 2max( ) min( )  , ,...,

i i iEvalP C im C im C nrange EvalP EvalP im k k k     (11) 

 
1

, ,

1 n

i i

k

EvalP C im C

im k

mean EvalP
n 

    (12) 
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i i iEvalP C EvalP C EvalP CCV std mean   (14) 

where the subscript EvalP indicates the evaluated performance, which in our case is cap, OCV, and 

volt, representing the module capacity, the OCV under each SOC point, and terminal voltage during 

C-rate capability test, respectively. The im represents the index of the module and n is the module 

quantities in Class Ci (i = 1,2,3,4), respectively. The rangeEvalP,Ci
, meanEvalP,Ci

, stdEvalP,Ci
 and CVEvalP,Ci

 

are the range, mean, standard deviation and coefficient of variation of the evaluated performance of 

modules index of k1, k2,…, kn in Class Ci , accordingly. 

 To combine the static and dynamic performance, the overall performance (OPCi
) of the modules 

(defined by Eq.(15)) is calculated for each class, in which two static performance metrics and two 

dynamic performance metrics are included. The reciprocal of the mean module capacity (1/meancap,Ci
) 

and the CV of the module capacity (CVcap,Ci
) in each class represent the static performance. The mean 

value of CVOCV under each SOC (meanCVOCV,Ci
) and the mean value of CVvolt under each accumulated 

ampere-hours (meanCVvolt,Ci
) are calculated and used as metrics to illustrate the dynamic performance 

inconsistency. The 1/meancap,Ci
, CVcap,Ci

, meanCVOCV,Ci
, meanCVvolt,Ci

 are normalized to make the 

performances comparable. The smaller the value, the better the overall performance, indicating that a 

good performance should have a large mean module capacity, small variations in module capacity, 

OCV-SOC and terminal voltage during C-rate capability test. 

 
, ,,

,

1 1
(( ) ( ) ( ) ( ) )

4

1,2,3,4

i i OCV C volt Ci i

i

C norm cap C norm CV norm CV norm

cap C

OP CV mean mean
mean

i

   



(15) 

 Table 3 compares the static capacity consistency in each class using four approaches. 

Unsurprisingly, the meancap of Approach 4 shows no differences regardless of the class (all around 

49.4Ah), implying the worst consistency among the other approaches, given that it was based purely 

on randomness. Thus, we exclude it from the comparison of the dynamic performance consistency. 

Approach 1 divided the 95 modules into 4 classes whose meancap are separated. The meancap for 
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Approach 1 from Class 1 to Class 4 are 46.02Ah, 48.29Ah, 49.08Ah and 50.47Ah, respectively. In 

Approach 1-3, the meancap of the modules for each class is separated, i.e., around 46Ah, 48Ah, 49Ah, 

and 50Ah, respectively, which illustrates the ability for effective screening and a degree of division 

accuracy of the three approaches. The meancap,Ci
 for each class are similar across the other three 

approaches (Eq.(12)), so it is reasonable to compare the range and CV of the capacity (rangecap,Ci
 and 

CVcap,Ci
 ). 

At first glance, Approach 3 appears to be superior in all aspects to Approach 1 and Approach 2. 

Indeed, in terms of capacity, it has the least range and CV in each class. However, in the dynamic 

performance consistency analysis that follows, we will reveal that this result is 'deceptive'. Approach 

1 and Approach 2 have the same rangecap in Class 1, but Approach 1 is slightly better than Approach 

2 in terms of the CVcap. Compared with Approach 2, the average rangecap and CVcap using Approach 1 

are reduced by 22.10% and 17.36%, specifically by 52.32% and 34.25% in Class 2, 25.23% and 19.67% 

in Class 3, and 10.83% and 12.26% in Class 4, respectively.  

Table 3 Comparison of capacity consistency in each class using four approaches (units for mean and range: Ah, 

and the value of CV has no units and is multiplied by 100 for demonstration purposes). 

 Class 1 Class 2 Class 3 Class 4 

Approach mean range CV mean range CV mean range CV mean range CV 

1 46.02 2.972 2.254 48.29 2.515 1.509 49.08 2.809 1.659 50.47 3.239 1.422 

2 46.02 2.972 2.330 48.56 5.275 2.295 49.57 3.757 2.065 50.47 3.633 1.620 

3 45.77 2.566 1.971 48.09 1.686 1.043 49.67 1.353 0.773 50.91 1.806 0.962 

4 49.46 3.897 2.841 49.46 5.188 2.925 49.48 5.677 2.934 49.46 6.749 2.975 

The OCV-SOC curve is calculated as the average of the discharging and charging voltage obtained 

from the module capacity test. Fig.7 illustrates the range (rangeOCV,Ci
) as well as the CV (CVOCV,Ci

) of 

the OCV curves for all modules in Class Ci under each SOC point employing three approaches. After 

the screening, the rangeOCV is indeed reduced in each class (Supplementary Fig.S2). The results of the 

module quantities of Class 1-4 for three approaches are marked in white in Fig.8. In the first class, 

even though Approach 1 has one more module than Approach 2 and Approach 3, the rangeOCV of 

Approach 1 is less than or equal to that of Approach 2 in more than 88% of the SOC intervals and the 

CVOCV is even slightly smaller in the 20-40% SOC intervals (Fig.7 (a) (e)). As expected, the variation 

is much larger in both Class 2 and Class 3. The CVOCV of Approach 2 is greater than that of Approach 
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1 by exceeding 90% and 80% of the SOC intervals in Class 2 and Class 3, respectively. In fact, there 

are around 30% of SOC intervals where the rangeOCV of Approach 2 is twice as large as that of 

Approach 1. Over 80% of the SOC intervals of CVOCV of Approach 1 is smaller than or equal to that 

of Approach 2 in Class 4 (Fig.7 (d) (h)). In comparison to Approach 2, the average rangeOCV and CVOCV 

of four classes using Approach 1 are decreased by 14.80% and 9.87%, respectively. 

Similar conclusions can be drawn from the results of Approach 3 and Approach 1. Surprisingly, 

the rangeOCV and CVOCV of Approach 3 are noticeably larger in both Class 2 and Class 3 compared 

with that of Approach 1, while the rangecap and CVcap of Approach 3 are actually smaller. This is 

because batteries with similar capacities are not necessarily expected to manifest a similar 

thermodynamic behavior, confirming the importance of dynamic characteristic-based criteria in 

screening. Approach 3 achieves marginally better OCV-SOC consistency in Class 4 since the module 

quantity is 19 batteries less than in Approach 1. Although Approach 1 is slightly worse than Approach 

3 in terms of rangeOCV for the last class, this difference is still within an acceptable margin of no more 

than 5mV maximum. Overall, the average rangeOCV and CVOCV of four classes utilizing Approach 1 

are 9.39% and 8.67% lower than those using Approach 3. 

(b)(a) (d)(c)

(f)(e) (h)(g)

 

Fig. 7. The range and the coefficient of variation of OCV-SOC in (a)(e) Class 1, (b)(f) Class 2, (c)(g) Class 3, 

and (d)(h) Class 4 under three approaches (solid: Approach 1, dash: Approach 2, dot: Approach 3). 
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Fig. 8. Results of the module quantities for three screening approaches. 

Fig.9 (a)-(d) shows the charging-based IC curves of Approach 1 in different classified groups with 

a zoomed-in voltage interval of 3.365-3.415V. The IC curves are calculated using the charging voltage 

obtained from the module capacity test. The peak height for peak ① around 3.38V, in general, is also 

in ascending order with the class number. The majority of the peak ① height is about 300, 450, 600 

and 850 Ah∙V-1 in Class 1, Class 2, Class 3 and Class 4, respectively. The peak shapes among different 

classes are varied, indicating a more consistent aging loss in each class and effective separation. In the 

first class, only one module is different between Approach 2 and Approach 3. Except for the additional 

module in Approach 1, there is also only one module different in Approach 1 and Approach 3. 

Therefore, the performance of charging-based IC curves of Approach 2 and Approach 3 in Class 1 

would be quite close to that of Approach 1 and are not presented here. The charging-based IC curves 

behave similarly in Class 4 and are also not shown. This is in line with the previous analysis that the 

OCV-SOC inconsistency among the three approaches is relatively small. Nevertheless, the situation is 

different for Class 2 and Class 3. As can be seen from Fig.9 (b)(e)(f), the maximum value of peak ① 

in Class 2 is below 500Ah∙V-1 in Approach 1 while it reaches around 750 Ah∙V-1 in Approach 2 and 

Approach 3. Similarly, in Fig.9 (c) (h) of Class 3, the maximum value of peak ② is around 3500Ah∙V-

1 in Approach 1 while it reaches around 4000 Ah∙V-1 in Approach 3, which is almost similar to the 

value of Approach 1 in Class 4. This shows that Approach 1 can better divide the modules into separate 

performances but with similar performances within the classes. As can be seen from Fig.9 (b)(e)(f) and 

(c)(g)(h), the blue for Class 2 and the green for Class 3, the peak ① around 3.38V is more 

concentrated in Approach 1 than in Approach 2 and Approach 3, which illustrates the good dynamic 

performance consistency of modules using Approach 1. 
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)
 

Fig. 9. Charging-based IC curves of classified modules employing three approaches: results of Approach 1 in 

(a) Class 1, (b) Class 2, (c) Class 3, and (d) Class 4; results of Approach 2 in (e) Class 2 and (g) Class 3; results 

of Approach 3 in (f) Class 2 and (h) Class 3. 
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Fig.10 demonstrates the initial, mean and maximum range and CV of the terminal voltage 

(rangevolt and CVvolt) during a 0.7C discharge for Approach (Ap.) 1-3. The results of the 1.2C discharge 

are similar to those of 0.7C and are presented in Supplementary Fig.S3. The initial rangevolt and CVvolt 

is determined using the first data point at the beginning of the testing. In general, the rangevolt and 

CVvolt display similar trends. The mean and maximum CVvolt are smaller overall in Approach 1 than in 

Approach 2 and Approach 3, meaning that the inconsistency of Approach 1 is indeed reduced 

compared with the others. More specifically, the mean CVvolt of Approach 1 is reduced by 44.3% and 

38.4% on average compared with Approach 2 and Approach 3. The maximum rangevolt of Approach 1 

in Class 1 is 0.285V while that of Approach 2 and Approach 3 reaches 0.448V, nearly 1.6 times larger. 

Compared with Approach 2 and Approach 3, the maximum rangevolt and maximum CVvolt of Approach 

1 in Class 2 and Class 3 is reduced by more than 50%. The dynamic performance of the terminal 

voltage of Approach 2 and Approach 3 is fairly similar in terms of mean and maximum values. This is 

partly because the dynamic characteristic-based criteria used in Approach 2 are highly correlated with 

capacity. For Class 4, the variation in rangevolt and CVvolt is not obvious for the three approaches, which 

is in agreement with the previous analysis. From Fig.10 (d), Class 3 and Class 4 in Approach 2 have a 

similar initial CVvolt. However, the differences between these two classes in terms of mean and 

maximum CVvolt are major, with the values of Class 2 being almost twice as large as those of Class 3, 

again confirming that static characteristic-based criterion alone (e.g., initial voltage point or the OCV 

at a certain SOC) is insufficient to ensure consistent dynamic performance during operation.  

Table 4 compares the overall performance of four approaches in four classes. The overall 

performance of Approach 1 in four classes is 0.7593, 0.6146, 0.6283 and 0.5992, meaning that modules 

in Class 1 have the worst overall performance and modules in Class 4 have the best overall 

performance. The average overall performance for Approach 1 is 0.6503, which is improved by 

18.94%, 4.83% and 34.41% compared with Approach 2, Approach 3 and Approach 4, respectively.  

Table 4 The overall performance for four approaches in four classes. 

 Proposed Benchmarks 

Class Approach 1 Approach 2 Approach 3 Approach 4 

1 0.7593 0.8500 0.8244 0.8950 

2 0.6146 0.8713 0.6977 0.8344 

3 0.6283 0.7491 0.6594 0.9374 

4 0.5992 0.6236 0.5456 0.8298 

average 0.6503 0.7735 0.6818 0.8741 
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(b)(a)

(f)

(c)

(e)(d)

 

Fig. 10. The range and coefficient of variation of the terminal voltage during the 0.7C discharge for three 

approaches: (a)(d) initial, (b)(e) mean and (c)(f) maximum. 

As for the screening time, compared with the approaches that require module-level criteria testing, 

the proposed approach shortens the testing time of the screening. Take the 5P95S battery pack in the 

paper as an example, a battery pack testing equipment containing auxiliary voltage measurements or 

battery management systems is enough to conduct the screening. However, it takes at least twice as 

long as the proposed approach if the number of channels in the module/cell testing equipment is 

assumed to be 50. Not to mention the time and effort involved in battery pack disassembly. The cost, 

energy and time saved are more considerable when the proposed approach is applied to large-scale 

retired LIB packs compared with approaches based on criteria that require module/cell-level testing. 

To sum up, our proposed approach (Approach 1) can effectively screen the 95 modules into four 

classes with separated meancap. The modules in Class 1 have the smallest mean capacity and worst 

overall performance, while the modules in Class 4 have the largest mean capacity and best overall 

performance. The screening results show that our proposed approach has better module static and 

dynamic performance consistency among the four approaches. The average overall performance of the 

proposed approach is improved by 18.94%, 4.83%, and 34.41% compared with Approach 2, Approach 

3 and Approach 4, respectively. In addition, our proposed approach only requires pack-level testing 

and does not rely on individual module-level testing to obtain the relevant screening criteria, 
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outperforming Approach 2 and Approach 3 in terms of screening time. Furthermore, although 

Approach 3 has the best static performance consistency, the results reveal that batteries with only 

similar capacities do not necessarily guarantee similar dynamic performance consistency, such as 

terminal voltage during operation. Therefore, it is indeed of necessity and significance to include 

dynamic characteristic-based criteria in screening in order to improve the performance consistency of 

the system.  

4.2. Comparison of the algorithm stability  

As the initialization of the centroid for most unsupervised learning clustering is random, in this 

section, we compare the screening results from multiple runs of the algorithms to show the stability of 

the adAP algorithm. The algorithms involved are adAP, fuzzy c-means and k-means, which are used 

respectively in Approach 1-3. Since the input criteria are different in Approach 1 and Approach 2, to 

show the advantages of the adAP algorithm, we employed our proposed dynamic characteristic-based 

criteria with fuzzy c-means for complementary illustration (referred to as Approach 5). Each approach 

was run 1000 times with the settings fixed in the algorithm (the setting is listed in Supplementary Note 

S3). In Approach 5, about 14.9% of the screening results in Class 3 had fewer than 4 samples, which 

has been subtracted from the probabilities shown in Table 5. For each run, the mean of the modules' 

capacity was used to identify the comparable classes of different algorithms. The standard deviation 

of the OCV at each SOC was calculated in each class (stdOCV,Ci
). Then, the mean standard deviation of 

the OCV across the 0-100% SOC, shown as Eq.(16), was taken as the criterion to compare the stability 

of the algorithm, whose value would change if the screening results changed.  

 
,

100

0

1
( ) 1,2,3,4

OCV C ii

j

std OCV C j

socsoc

mean std soc i
N 

  ，   (16) 

Where stdOCV,Ci
(socj) is the standard deviation of OCV of modules at socj in cluster Ci (i = 1,2,3,4). 

Nsoc is the number of sampled SOC. 

Finally, we computed the probability of different results for this criterion during the multiple runs 

of the algorithm, as presented in Table 5. As expected, the results of Approach 1 remain unchanged 

during the multiple runs, yielding the most stable results. This is because the adAP treats all the data 

points as exemplars and scans the "preferences". Moreover, the 
,OCV Ci

stdmean  of Approach 1 maintains 

the lowest in the first three classes compared with Approach 2 and Approach 3, supporting the 
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conclusions in Section 4.1. The value for the last class is not the smallest, which is not surprising and 

is consistent with our previous analysis. The probability that 
,OCV Ci

stdmean  exhibits some other value 

in either Approach 2 or Approach 3 implies that the batteries in the clusters have changed, resulting in 

more than one classification result. The reason for the poor stability is the random assignment of 

centroids in both approaches during initialization. For Approach 5, the same mean standard deviation 

as Approach 1 is achieved in each class (Table 5), which validates the effectiveness of the proposed 

dynamic characteristic-based criteria to some extent. But even with the same input criteria, Approach 

5 shows some other values of probability, confirming the advantage of the adAP over fuzzy c-means 

in terms of stability and the necessity of adopting it.  

 
Table 5 Probability of the mean standard deviation of the OCV over 0-100% SOC interval in each class during 

1000 runs of the four approaches.  

Class Approach 
,OCV Ci

stdmean  (mV) Probability (%) 

1 

1 3.072 100.0 

2 3.274; 3.759; 3.831; 4.028 60.6; 27.6; 11.6; 0.2 

3 3.332 100.0 

5 3.072; 3.1839 53.4; 31.7 

2 

1 2.711 100.0 

2 3.367; 2.922; 2.951; 2.867 60.6; 27.6; 11.6; 0.2 

3 2.980; 2.884 59.0; 41.0 

5 2.711; 2.439 53.4; 31.7 

3 

1 2.5378 100.0 

2 2.848; 3.077; 3.043; 3.205 60.6; 31.9; 7.3; 0.2 

3 3.285; 3.265 59.0; 41.0 

5 2.538; 2.652 53.4; 31.7 

4 

1 2.746 100.0 

2 2.856; 2.449; 2.400; 2.452 60.6; 31.9; 7.3; 0.2 

3 2.667 100.0 

5 2.746; 2.803 53.4; 31.7 

4.3. Discussion 

4.3.1. Explanation of the approaches' results 

Previously, we demonstrated the importance of dynamic characteristic-based criteria in screening. 

However, Approach 2, which also utilizes two dynamic characteristic-based criteria, failed to deliver 
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good screening results. This is probably because these dynamic criteria are still chosen by their 

correlation with capacity, which is essentially a "static" criterion. This also explains the similar 

performance of Approach 2 and Approach 3 in terms of dynamic consistency performance. Although 

the dynamic criteria of Approach 2 were capacity-dependent, it did not achieve similar screening 

results as Approach 3 regarding capacity consistency. Upon further investigation, we find that the 

Pearson correlation coefficient ρ between criteria and module capacity was only 0.7536 in our case, 

whereas in Ref.[42] ρ reached 0.9235, indicating that the two criteria chosen did not correlate as well 

with capacity as they did on their data so leading to less favorable static performance, i.e. capacity 

consistency.  

 Our proposed method yields superb results because it captures a critical feature of the module 

stemming from battery pack degradation, namely the SOC interval, which is both a consequence and 

a cause of degradation. It reflects the differences among the modules to some extent, which, after all, 

have almost identical values of the SOC interval initially. During the pack-level testing, the 

accumulated ampere-hours are the same for all series-connected modules. If the module has a larger 

capacity, the changes of SOC (∆SOC) will be smaller. Conversely, if the capacity of the module is 

smaller, the ∆SOC is larger. Therefore, if some criteria representing the ∆SOC can be found, these 

criteria can be used to classify the modules into different capacity ranges. Our proposed criteria not 

only reflect the changes in SOC but also contain information about the starting SOC, which further 

describes the operating SOC interval resulting from the degradation. Due to exposure to an 

inhomogeneous external environment, the SOC intervals of the modules in the pack gradually drift 

away from their initials. Batteries aged in different SOC intervals can trigger different aging modes 

[48], reflected in dynamic performance, such as terminal voltage during operation. Batteries aged in 

similar SOC intervals tend to have similar aging modes, meaning similar dynamic performance 

consistency. Except for the absolute value of the terminal voltage, a vital feature to characterize the 

drifting SOC interval of the module is the electrochemical reactions corresponding to the IC curve. 

Via dynamic characteristic-based criteria that represent the "consequence" of the degradation: the 

phase transformation reactions number and voltage proportion during the pack-level testing, the 

modules are classified into groups with similar SOC intervals and potentially experience similar aging 

modes. Thus, by classifying the modules using our proposed dynamic characteristic-based criteria, 

good consistency in static and dynamic performance can be achieved.  
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4.3.2. Adaptability of the proposed approach 

The proposed approach performed well in fast screening with pack-level testing data under 0.1C, 

prompting us to further increase the C-rate to 0.3C to verify its adaptability, as this C-rate is closer to 

practical applications of EVs and reduces the screening testing time. The module quantities in each 

class are the same for both 0.1C and 0.3C, respectively (Fig.8) and the modules in each class are also 

the same. The unchanged results suggest that the proposed approach is relatively robust. The quantified 

results for static (cap) and dynamic (OCV-SOC) performance are shown in Supplementary Table S1 

and Fig.S4. 

4.3.3. Applications and outlook 

The proposed fast screening approach is promising for large-scale applications of retired LIBs. 

Compared with the approaches that are based on module-level testing, it is cost-, effort- and time-

saving as there is no need to disassemble the pack into modules to test them separately to obtain 

corresponding screening criteria. A battery pack testing equipment containing auxiliary voltage 

measurements or the battery management system is enough to conduct the screening in this study, 

while it may take much longer to measure the screening criteria for approaches based on criteria that 

require module-level testing. Not to mention the labor and the cost. Furthermore, the adAP algorithm 

employed is unsupervised and does not need to train the model beforehand, further saving time from 

an algorithmic perspective. These characteristics of the proposed framework facilitate fast, accurate, 

stable screening and accelerate the progress of second use, contributing to the sustainability of 

renewable energy and the reliability of battery storage systems. 

Although the proposed approach has been verified on one practical dataset, there are still several 

issues that could not be further investigated in this paper due to resource and time limitations. First, 

the adaptability of the proposed approach on battery packs with varying degrees of degradation and 

inconsistency. Second, research extending to other battery chemistries, such as nickel-manganese-

cobalt and lithium-titanate-oxide, is needed in the future. In addition, the effect of measurement errors 

of different testing equipment in large-scale screening should be studied. Last but not least, future 

research is expected on how to regroup the retired LIBs to suit different application scenarios. 

5. Conclusions 

Aiming at accelerating the progress of retired lithium-ion batteries for the second use, a fast and 
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accurate screening approach based on pack-level testing is proposed for evaluating and classifying 

module-level aging. The main conclusions are summarized: 

1) Static characteristic-based criterion alone does not necessarily guarantee good dynamic 

performance consistency of retired batteries in second use, and therefore it is essential to 

incorporate dynamic characteristic-based criteria during screening.  

2) Our proposed dynamic characteristic-based criteria capture the comprehensive performance 

of retired modules, making the approach applicable for battery packs with up to 30% module-

to-module SOC inconsistencies. Its adaptability to large C-rate shows promises for large-scale 

applications in second-use screening. 

3) The efficiency of pack-level testing in screening criteria measurements is increased by at least 

50% compared with approaches based on criteria that require module-level testing. Adaptive 

affinity propagation clustering, a pre-training-free algorithm, further accelerates the screening 

progress. 

4) Our proposed approach can effectively divide the 95 modules into four classes with separated 

static and dynamic performances, achieving reasonable static performance consistency and 

better dynamic performance consistency as well as higher clustering stability, with average 

overall performance improvements of 18.94%, 4.83% and 34.41% compared with the other 

three benchmarks. Yet, there is still a large gap between research and industrial 

implementation. Hence our future work is planned to explore the regrouping strategies for 

retired batteries from different manufacturers to suit various application scenarios. 
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