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Abstract

An accurate estimation of the residual energy, i.e., State of Energy (SoE),

for lithium-ion batteries is crucial for battery diagnostics since it relates to the

remaining driving range of battery electric vehicles. Unlike the State of Charge,

which solely reflects the charge, the SoE can feasibly estimate residual energy.

The existing literature predominantly focuses on showcasing diverse methods

with a gap in conducting in-depth analysis and comparison of the SoE. The

scope of this work is to provide a comprehensive understanding of the SoE by

discussing the feasibility and applicability of various definitions and estimation

approaches from the literature. For the first time, we classify existing SoE

definitions, considering the differences between the inherent stored and usable

energy. In the absence of a unified definition in the literature, we propose two

physically feasible definitions.
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Introduction

Motivation

The precise estimation of the remaining energy, the so-called State of En-

ergy (SoE), is crucial in all sectors of electrified transportation, e.g., vehicles,

trains, and ships [1, 2, 3]. The SoE enables not only an efficient use of the

complete battery system [4] but also provides knowledge of the residual driving

range and, therefore, mitigates the so-called range anxiety [3, 5]. In general,

the SoE estimation can be divided into two categories: the estimation of the

residual energy stored in a battery, SoEstored, and the estimation of the residual

usable energy, SoEusable, which correlates with the remaining driving range of

an electric vehicle. However, in literature, various SoE definitions exist for each

category, making it challenging to compare existing SoE estimation algorithms.

Traditionally, the residual energy is estimated with the help of the State of

Charge (SoC), meaning that the residual energy is incorrectly assumed to be

constant for any SoC interval. To illustrate this, Figure 1(a) shows the residual

energy and the differential energy with respect to the SoC in blue and green, re-

spectively. The differential energy is calculated with the help of the differential

watthour analysis (DWA), similar to the differential voltage analysis [6], based

on the quasi open-circuit voltage (qOCV) of a tested, commercial NCA/C+Si

battery cell. The values of the DWA are negative since the remaining energy

decreases with decreasing SoC, showing that more energy per SoC can gener-

ally be drawn from a cell for higher SoCs. Therefore, although the SoC metric

is commonly used for residual energy estimation, it cannot reflect the energy

that can be drawn from a battery cell accurately [7]. Another challenge that

additionally occurs for residual usable energy estimation is that it is influenced

by future operating factors such as temperature and current rate [4, 8]. Figure

1(b) shows the influence of operating factors by illustrating that the total usable

energy increases for lower current rates and higher temperatures which is not

reflected in the traditional methods.
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Figure 1: (a) Differential watthours analysis (DWA) of a commercial NCA/C+Si cell in green.
The remaining stored energy is depicted in blue. Since all values of the DWA are negative,
more energy per SoC can be discharged at higher SoC values. (b) Total usable energy of
an NCA/C+Si cell for different temperatures and constant current rates during discharge.
Generally, more energy can be discharged from the battery at higher temperatures and lower
current rates. This is in line with findings from [9]. Both effects from (a) and (b) lead to
errors during SoC-based range prediction.

In the existing literature, researchers have already proposed multiple definitions

for the SoE metric but without examining the significance and applicability of

these definitions. The lack of a clear and standardized definition of SoE makes

it difficult to compare and evaluate different approaches for SoE estimation in

real-world applications. Furthermore, there is an absence of a comprehensive

comparison between the two distinct concepts: SoEstored and SoEusable. Given

the importance of understanding these concepts for accurate residual energy

estimation, it is surprising that the literature primarily focuses on highlighting

improvements made in one of these concepts rather than providing a holistic

analysis and comparison. Some authors, such as Hickey et al. [9], focus on the

comprehensive comparison between the SoE and SoC, highlighting the advan-

tages of the SoE over the SoC estimate for remaining energy. However, to the

authors’ best knowledge, there is no literature directly comparing the different

energy concepts and focusing on the comprehensive understanding of the energy

definition for each category.
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Contributions of this Work

To fill the aforementioned research gap, our work enhances the current un-

derstanding by providing an in-depth analysis of energy definition and the cru-

cial factors that need to be taken into account when calculating the SoE. For

the first time, we subsequently classify existing definitions into the two energy

concepts leading to a clear understanding of the performance and comparability

of residual energy estimation methods. As a novel contribution, we propose

two SoE definitions that, unlike most previous publications, directly correlate

with the battery’s characteristics and avoid distortion [10], facilitating the im-

plementation of a practical SoE algorithm. For the first time, we derive the

mathematical relationship between residual stored energy and SoC. By using

this equation, future publications can extend their estimation methods based on

existing SoC calculations. Most publications predominantly focus on improving

SoE estimation methods and not on the direct comparison and comprehensive

analysis of the metrics with the help of experiments. Thus, we conduct experi-

ments and verify the advantages of adequate SoE estimation in contrast to tra-

ditional methods. With the characteristics of a commercial 3.35Ah NCA/C+Si

battery cell, we determined the SoE(OCV ) and experimentally verified that

the traditional method underestimates the residual energy significantly for the

tested battery cell. To further distinguish the SoEstored from SoEusable ex-

perimentally, we conducted various constant current discharge experiments and

highlighted the importance of the SoE metric for residual energy estimation,

especially for higher currents.

Remainder of this Work

The subsequent sections of this work are organized as follows: In the upcom-

ing section, we briefly describe the theoretical background and the two different

energy concepts. Then, we present SoE definitions in the existing literature

for each energy concept. Building on that, we evaluate the strengths and weak-

nesses of these specific definitions and propose two feasible novel SoE definitions
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with experimental validation. We then critically discuss the challenges and op-

portunities of SoE estimation methods highlighting the effects that need to be

considered for improving residual energy estimation. In the last section, we

summarize the main contributions and the conclusions that can be drawn from

this work.

Fundamentals

State of Charge

To make an adequate estimation of the SoE, we first need to establish a

definition of the SoC. There are several definitions of the SoC in literature [11,

12]. Each of them uses its own kind of nomenclature. To be able to make a meta-

analysis, we define the SoC at time t as the ratio of the remaining charge Q(t)

to the maximum charge Qmax that can be drawn from the cell corresponding

to the actual capacity within manufacturer specifications: SoC(t) = Q(t)
Qmax

.

The SoC is defined as a value between 0% and 100%. Since Qmax diminishes

when the cell ages, the SoC for an aged cell still lies between 0% and 100%.

Energy Concepts

An introduction to the different energy terms used in this work is essential

for discussing the definitions and methods for SoE estimation. The used terms

are schematically explained in Figure 2 as follows:

(a) When the cell is fully charged and has an SoC of 100%, the stored en-

ergy, Estored, corresponds to the maximum stored energy Emax,stored.

Emax,stored is not entirely usable due to energy losses during operation

Emax,dissipation. Thus, the maximum usable energy, Emax,usable, is less

than the maximum stored energy Emax,stored. Since the cell is fully

charged, the usable energy, Eusable, equals Emax,usable, and the dissipation

energy, Edissipation, equals Emax,dissipation.

(b) When the cell is further discharged, the stored energy, Estored, and the

usable energy, Eusable, decrease. The dissipation energy, Edissipation, is
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Figure 2: 1) Schematic depiction of the used energy terms. (a) The cell is fully charged, and
the actually stored energy corresponds to the maximum stored energy. (b) During discharging,
the stored and usable energy decrease due to operating losses. (c) The cell is fully discharged,
and no energy is left. 2) Schematic depiction of the used energy terms during discharge under
different aging conditions: d) Fresh cell e) Aged cell. Since the SoC takes into account the
aging of the cell, the limits of the SoC for an aged cell are also between 0% and 100%.

less than the maximum dissipation energy Emax,dissipation since energy

has already been dissipated during operation (Edissipated). It should be

noted that Estored is composed of Eusable and Edissipation.

(c) When the cell is completely discharged and the SoC has dropped to 0%.

The discharge current has approached 0A, and all stored energy has been

removed from the cell. Estored as well as the usable energy Eusable are

therefore 0Wh. The value of the energy dissipated during the whole dis-

charge process corresponds to

Emax,dissipation.

Figure 2(d) and (e) further schematically explains the difference in the energy

terms between a fresh and an aged cell during the discharge process. The

available capacity for an aged cell is lower than that for a fresh cell. Since the

available capacity of an aged cell is lower than that of a fresh cell, this results

in a lower maximum stored energy of an aged cell compared to the maximum
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stored energy of a fresh cell. Additionally, it can be noted that for the aged

cell, Edissipation and Emax,dissipation are relatively larger due to an increase in

internal resistance caused by progressive aging. If more losses occur during

operation, less energy can be utilized, and Eusable further decreases.

Definitions of State of Energy

Eq. No. Definition Explanation of Variables Ref

(1.1) ξk+1 = ξk − poc,k∆t/Ea
poc,k : pseudo power on the OCV

[10]
Ea: nominal energy capacity

(1.2) zk+1 = zk − pOC,k∆t/Ea

z : SoE
[13]pOC,k : power on the OCV

Ea : max available energy

(1.3) SoEk+1 = SoEk −
ηk·UOC,k·ik·∆t

Ea

k : indexes moment k∆t

[14]

∆t : sampling interval
η : current efficiency
Uoc : open-circuit voltage
i : current
Ea : maximum available energy of

a full charged battery

(1.4) SoE(SoC) =
Estored(SoC)

EC =

∫ q(SOC)
q(SOC=0%)

vBat,OCV (q)·dq∫ q(SOC=100%)
q(SOC=0%)

vBat,OCV (q)·dq

Estored : amount of stored energy
[15]EC : actual energy storage capacity

vBat,OCV : battery open-circuit voltage

(1.5)

SoE = Erem
Eava

, Eava = Erem + Echge

Erem : residual energy

[16]

Eava : maximum available energy

Erem =
∑n

i=1

∫ SOCi
t

SOCi
t1

Ci
aU

i
OCV (SOC)dSOC

Echge : battery charge energy
SoCt : current State of Charge

Echge =
∑n

i=1

∫ SOCi
t2

SOCi
t

Ci
aU

i
OCV (SOC)dSOC

SoCi
t1

: SoC of the ith cell, when battery

reaches lower cut-off state at time t1
SOCi

t2
: cell current SOC when battery

reaches the upper cut-off voltage

(1.6) EPRDE(t) =
∑n

i=1 Ci
N

∫ SoCi
t

SoCi
t1

Ui
OCV (SOC)dSOC

EPRDE : battery pack remaining discharge
energy

[17]

Ci
N : maximum available capacity of

the ith battery
n : number of cells in the battery pack

connected in series

SOCi
t : SOC of the ith battery at time t

SOCi
t1

: SOC of the ith battery when one

of the batteries in the battery pack
reaches the lower cut-off voltage

Table 1: Definitions of the State of stored Energy in literature. We assign the definitions
from the literature to the metric State of stored Energy if no losses are accounted for in the
numerator. The column “Definition” shows the original definitions of the SoE from the paper.
The column “Explanation of Variables” describes the variables as long as they are described
in the respective manuscript. Only equation (1.4) can be feasibly used for residual stored
energy estimation.

The SoE is not clearly defined in the existing literature. However, the basic

idea is largely uniform: The SoE represents the energy state of a cell, i.e., the

residual energy normalized to a specific reference energy value.

We assign the definitions from the literature roughly to two concepts and list

them in table 1 and table 2. For each concept, we then discuss in detail the

representative definitions from the literature for SoE. The SoE definitions with

the equation numbers (1.1)-(1.6) aim to describe a theoretical energy state pro-

viding information about the energy inherently stored in a cell. Other authors
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define a practical energy state, which correlates with the energy that can be

used, taking into account the dissipation energy. Those are the definitions with

the equation numbers (2.1)-(2.7). To overcome the weaknesses of existing defini-

tions, we propose and analyze one definition for each concept that is physically

feasible for SoE estimation and can be directly applied for online residual energy

estimation.

Definitions of Residual Stored Energy

Table 1 presents SoE definitions from the literature evaluated in this paper

that do not intend to consider losses during the operation of the cell and are

further described in the following.

Chang et al. [10] define in equation (1.1) the SoE as a state that relates to a

’pseudo-power’, pOC , which is the product of the OCV and current. The losses

that occur during operation are thus not taken into account, and the definition

correlates with the energy that is stored in the battery. The SoE in this def-

inition is normalized to the nominal energy, meaning that the SoE could be

greater than 100%, indicating that more energy is stored than actually can be

stored.

In contrast to equation (1.1), Xie et al. [13] use the maximum available energy

as a reference value that considers the influence of temperature and aging on

the available energy, as shown in equation (1.2). Therefore, losses during opera-

tion are considered. However, it is not advisable to include losses in the energy

reference value while considering the residual stored energy. This results in a

distortion of the SoE, and the SoE is not necessarily a value in the range of

0% and 100% and will be overestimated during charging and underestimated

during discharging.

In equation (1.3),Zhang et al. [14] take the coulombic efficiency into account

to cover the influences of charge losses on the SoE. Although this consider-

ation is physically reasonable, it should be noted that usually, the coulombic

efficiency of lithium-ion batteries can be approximated to the value of 100%

[18]. For other battery technologies, such as lead-acid batteries, coulombic effi-

8



ciency needs to be considered. In this definition, the SoE is normalized to the

maximum available energy depending on a constant temperature but varying

current rates leading to a distortion of the SoE in the application.

Rubenbauer et al. [15] define the SoE in equation (1.4) as the ratio of stored

energy to the actual energy storage capacity. Both the numerator and denomi-

nator correlate with the OCV. If the stored energy is summed up at all times,

for example, during a complete discharge, this sum corresponds to the so-called

energy capacity equivalent to the maximum stored energy. This ensures that

the value of the SoE for a fully charged battery equals 100% and the value

of the SoE for a fully discharged battery equals 0% and thus is applicable for

online estimation.

Equation (1.5) defines the SoE for the battery pack as the ratio of the remaining

energy to the maximum available energy. Both remaining energy and maximum

available energy are a function of the OCV of the battery pack. It should be

noted that the presented SoE definition considers the differences between the

cells in a battery pack due to cell-to-cell variance. As the cells connected in

series do not reach the lower cut-off voltage concurrently due to variances, the

’weakest’ cell limits the total stored energy of the battery pack. Since the nomi-

nator and the energy reference value both correlate with the OCV, it is ensured

that the SoE has a value between 0% and 100%. The definition presented by

Zhang et al. reflects that losses due to operating conditions are neglected unless

they are reflected in the OCV.

Instead of defining the SoE, in equation (1.6), Zhang et al. [17] define the bat-

tery pack remaining discharge energy EPRDE as the cumulative energy of every

cell to the moment one cell reaches its lower cut-off voltage. Similar to equation

(1.5), the remaining discharge energy is calculated for a battery pack consisting

of various cells. Even though it is not clear how the maximum available capacity

is defined, i.e., whether it is equal to the nominal capacity of the individual cell,

the remaining discharge energy of the battery pack correlates with the OCV of

the cells at time t. Thus, the definition feasibly describes the stored energy of

a battery pack.
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Eq. No. Definition Explanation of Variables Ref.

(2.1) zk = zk−1 − η∆Ea
Ea

= zk−1 −
ηUt,k−1iL,k∆t

Ea

∆t : sampling time

[7]
∆Ea : variation of battery energy during each

sample time
Ea : available energy of battery
η : energy efficiency of battery

(2.2) sk = sk−1 −
ηs,k∆Ea

Ea
= sk−1 −

ηsUt,k−1iL,k∆t

Ea

∆t : sampling time

[19]

s : SoE
∆Ea : variation of battery energy during two

contiguous time samples
Ea : battery available energy
ηS : battery energy efficiency

(2.3) SoEk = SoEk−1 − ηVt,k−1IL,k−1ts/EN

η : energy efficiency

[20],[21]
EN : nominal energy
IL : load current
Vt : terminal voltage

(2.4) SOE(t) = SOE(t0) −
∫ t
t0

UtILdt

En

Ut : terminal voltage of the battery

[4]
IL load current of the battery
En : total available energy of the battery
t0 : initial moment of discharge
t : end moment of discharge

(2.5) SOE(k) = SOE(k − 1) −
ηIk−1Vk−1∆t

EN (T,κ)

η : coulombic efficiency

[22]

Ik−1 : current at sample time k − 1
Vk−1 : terminal voltage at sample time k − 1
∆t : sample time
EN (T, κ) : total available energy
T : temperature
κ : discharge rate

(2.6) SoE% = [1 +

∫ t1
0 ηe·V (t)·I(t)dt

En
] · 100%

V : battery voltage

[9]
I : battery current
ηe : coulombic efficiency
En : nominal energy

(2.7) ERDE =
∫ tlimit
t Ut · Idt =

∫ Qcum(tlim)

Qcum(t)
UtdQ

Ut : battery terminal voltage
[23]Qcum(t) : already cumulated discharge capacity

tlim : end-of-discharge time

Table 2: Definitions of the State of usable Energy in literature. We assign the definitions from
the literature to the metric State of usable Energy if losses are accounted for in the numerator.
The column “Definition” shows the original definitions of the SoE from the paper. The column
“Explanation of Variables” describes the variables as long as they are explained in the original
manuscript. Only equation (2.7) can be feasibly used for residual usable energy estimation.

Definitions of Residual Usable Energy

Table 2 presents SoE definitions from the literature that intend to consider

losses during the operation of a cell. The definitions, specifications as well as

explanation of the variables are the original terms used in the respective litera-

ture and are not further adapted.

Equations (2.1) and (2.2) both describe a discrete SoE that correlates with

the terminal voltage and the instantaneous current. The remaining energy is

normalized to the available energy. By including the terminal voltage in the

nominator, losses during cycling are considered, and therefore, they need to be

considered in the energy reference value for a feasible definition of the SoE.

However, it is not clear how the available energy is defined. Furthermore, the

battery energy efficiency η is included, which is the ratio of the total discharge

energy to the total charge energy. As described in [15], the battery energy

efficiency already considers losses. Thus, the dissipation energy is considered
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twice in equations (2.1) and (2.2) by taking into account energy efficiency and,

additionally, the dissipation energy reflected in the terminal voltage.

In equation (2.3), Wei et al. [20] also include energy efficiency in their proposed

SoE definition. In contrast to the previous definitions, the reference value rep-

resents the nominal energy; thus, the SoE is independent of future conditions.

This definition makes the real-time estimation easier, but it does not reflect a

feasible meaning of the SoE. By normalizing the usable energy to the nominal

energy, the SoE may not reach the upper limit of 100% in operation. A more

practical solution for the application would be to include aging in the nominal

energy. Lai et al. [4] define with equation (2.4) the State of usable Energy as a

function of battery terminal voltage and current. The battery’s total available

energy considers different operating conditions such as temperature, aging, and

current rate. However, it remains an issue that the dynamic variation of those

conditions and their influence on the SoE are neglected. The varying tempera-

ture and current rate in operation may result in SoE values outside the feasible

boundaries.

In equation (2.5), Dong et al. present a discrete SoE definition that includes the

coulombic efficiency [22]. The energy reference value as a function of tempera-

ture and current rate represents the total available energy, which is defined as a

product of the total available capacity and the OCV of a fully charged battery.

Other environmental factors, such as aging, are not considered, whereas they

are considered in the nominator by taking into account the terminal voltage

that also reflects aging. In order to determine the total available energy, the

authors suggest a case distinction for different temperatures and current rates.

The dynamics of the total available energy are neglected.

Equation (2.6) describes the SoE as the ratio of usable energy to nominal en-

ergy. It should be noted that this definition only describes the SoE of a fully

charged battery for a discharging process. With a slight modification of the

definition, it can also be applied to batteries with any initial SoE. The losses

are considered in the numerator of the proposed SoE definition, whereas they

are neglected in the reference value with the normalization of the SoE to the
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nominal energy. Therefore, the SoE under this definition may be higher than

the SoE that does not intend to consider losses during cycling. However, taking

the nominal energy as a reference value makes a comparison of different SoE

values easy.

In equation (2.7), Liu et al. [23] define the residual energy as the integration

of the terminal voltage from the current time until the battery is completely

discharged. By taking into account the terminal voltage, the dissipation energy

is considered. Therefore, this definition is feasible for determining the residual

usable energy and highly applicable since the inherent correlation of the usable

energy to the terminal voltage is reflected in the definition.

Discussion of Existing and Proposition of Physically Feasible SoE Definitions

As presented, numerous definitions and concepts for the SoE exist in the lit-

erature. Table 3 summarizes the individual strengths and weaknesses for each

presented SoE definition. It is visible that most existing definitions do not

directly correlate with the remaining energy and rely on substantial simplifi-

cations. Moreover, the mismatch between the numerator and denominator in

common SoE definitions belonging to different energy concepts leads to drifting

limits and distorted SoE. For instance, (1.3) neglects operating conditions in

the nominator while accounting for them in the denominator leading to SoE

limits outside of bounds. To address the issue of SoE drifting, the nomina-

tor and denominator must refer to the same energy concept. To the best of

the authors’ knowledge, the existing literature does not currently provide a vi-

able definition for each energy concept, even though a physically meaningful

definition is imperative to develop efficient algorithms for residual energy esti-

mation. To bridge this gap, in this section, we propose two novel definitions

that are physically meaningful, mitigate bias, and apply to all battery types.

Considering the battery’s inherent characteristics and avoiding oversimplifica-

tions, these definitions are robust and reliable for SoE estimation. We verify

the feasibility of the proposed definitions with the help of experiments. We then

quantitatively compare our definition to the SoC showing the advantage of the
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Table 3: Advantages and disadvantages of the presented SoE definitions. In this table, the
existing definitions are assigned to the two concepts: SoEstored and SoEusable. Only equation
(1.4) for SoEstored and equation (2.7) for SoEusable use the physically correct definition.
Other definitions result in drifting SoE limits, which, if not accounted for, can lead to safety-
critical operations.

SoE Definitions Evaluation
Stored Energy Usable Energy

No. Pro Con No. Pro Con
(1.1) Allows rapid implemen-

tation and easy compa-
rability

Nominal energy as ref-
erence value leading to
drifting of SoE limits

(2.1),
(2.2)

- Losses accounted twice,
available energy not ap-
parent

(1.2) - Losses are considered in
energy reference value

(2.3) Easy real-time imple-
mentation

Static reference value,
losses accounted twice

(1.3) Consider coulombic effi-
ciency

Operating conditions are
considered in the refer-
ence value

(2.4),
(2.5)

Account for tempera-
ture, aging and current

Not applicable for dy-
namic profiles

(1.4) Use battery parameters
also for reference value

- (2.6) Easy comparability Only for fully charged
battery, static reference
value

(1.5) Consider the cell-to-cell
variance

No temperature depen-
dency, efficiency is as-
sumed to be 100

(2.7) Clear, account for tem-
perature, aging and cur-
rent

-

(1.6) Consider the cell-to-cell
variance

Maximum available ca-
pacity not apparent

proposed definition compared to the traditional methods.

State of Stored Energy

The State of stored Energy describes the ratio of the stored energy Estored,

which can ideally be discharged starting at time t, to the maximum stored

energy Emax,stored. Since the charge amount that can be stored in the battery

decreases, and the OCV curve shifts with progressive aging, the maximum stored

energy decreases simultaneously. Similar to [15], SoEstored is defined according

to (1):

SoEstored(t) =
Estored(t)

Emax,stored
=

∫ Q(SoCt)

Q(SoC=0)
UOCV (Q)dQ∫ Q(SoC=1)

Q(SoC=0)
UOCV (Q)dQ

(1)

In Figure 3, the OCV of the tested NCA/C+Si cell is depicted in blue, and

the cell’s terminal voltage based on a constant current discharging of the cell

at 25 °C is depicted in green. Estored and Emax,stored both relate to the OCV,

whereas the stored energy considers the voltage course between the current

charge amount until no more energy or charge can be extracted and the SoC

and the SoE reach 0%. The Emax,stored for the tested cell, depicted in Figure 3,

is 12.25Wh and completely independent of discharge conditions. The SoEstored
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Figure 3: The stored energy is the integration of the OCV over charge. Estored(t) (blue
area) is the energy from the actual time until no more energy is stored in the battery. The
maximum stored energy (hatched area), Emax,stored, is the stored energy between the full
and empty state of the cell. The specifications given by the manufacturer define the full and
empty states. SoCDCH considers that the end-of-discharge voltage is reached earlier for the
given constant current discharge conditions. During the discharging process, the maximum
stored energy of the tested cell is 12.25Wh, differing from the maximum usable energy, which
is 10.83Wh for the given discharge conditions.

does not include operational losses.

Similar to the relationship between SoC and the OCV, a relationship between

the SoEstored and the OCV can be derived. For this purpose, it is helpful to

discretize the continuous formulas for the SoC as shown in equation (2) and for

the SoEstored as in equation (3).

SoCk = SoCk−1 +
IL,k ·∆t

Qmax
(2)

SoCk describes the current state. SoCk−1 represents the previous SoC. The

current at time k is IL,k, and the maximum charge amount is denoted as Qmax.
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∆t represents the sampling time.

SoEstored,k = SoEstored,k−1 +
IL,k · UOCV,k ·∆t

Emax,stored
(3)

SoEstored,k represents the current SoE, SoEstored,k−1 describes the previous

value. The current OCV is denoted as UOCV,k. Emax,stored describes the max-

imum stored energy. By transforming equation (2) and substituting it into

equation (3), for the first time, we derive a direct, discrete mathematical rela-

tionship between the SoC and the SoEstored, as seen in equation (4).

SoEstored,k = SoEstored,k−1+

Qmax

Emax,stored
· (SoCk − SoCk−1) · UOCV,k (4)

Equation (4) demonstrates that the stored residual energy is directly related to

the SoC of a battery cell, meaning that the SoEstored can be determined af-

ter the diffusion processes have completely decayed by measuring the terminal

voltage presenting a significant opportunity in the field of residual energy estima-

tion. It should be mentioned that this relationship is influenced by progressing

cell aging and varying temperatures since the ratio of maximum capacity and

maximum stored energy changes.

Figure 4 shows the SoC and SoEstored as a function of the OCV. It is visible

that, for a fixed OCV , the value of the SoE is lower than the SoC value asso-

ciated with that voltage. In green, the deviation between SoC and SoEstored,

∆SoC|SoEstored = SoC − SoEstored, is depicted. The deviation of the SoC

from the SoEstored amounts to a maximum of approximately 3% for the tested

NCA/C+Si cell. It should be noted that the difference between SoC and

SoEstored strongly depends on the OCV (SoC) relationship of a cell and varies

for different cell chemistries. This is in line with the findings in [9].
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Figure 4: Comparison of SoC(OCV) and SoEstored(OCV). The deviation is depicted in green.
Visibly, a range prediction based on the SoC(OCV) would overestimate the range by over 3%.
This is mainly due to the fact that the SoC does not represent a linear equation with respect
to the OCV.

State of Usable Energy

The State of usable Energy, SoEusable, describes the ratio of the usable

energy, Eusable, to the maximum usable energy, Emax,usable, and is defined at

time t as a function of the environmental factors, depicted in this paper as λ,

as in equation (5):

SoEusable(λ, t) =
Eusable(λ, t)

Emax,usable(λ)
=

∫ Q(SoCt)

Q(SoC=0)
UT (λ,Q)dQ∫ Q(SoC=1)

Q(SoC=0)
UT (λ,Q)dQ

(5)

Figure 5 visualizes the definition of Eusable and Emax,usable. Since the discharge

curve is smaller than the OCV curve for every time t and the remaining charge

is less while discharging, the usable energy is significantly lower than the stored

energy. For the given discharge process, the Emax,usable is 10.83Wh, and thus

significantly lower than the Emax,stored with 12.2525Wh. As experimentally

demonstrated by Hickey et al. [9], the difference between the remaining usable

energy and the SoC and SoEstored value is strongly influenced by operating

conditions, such as current rate, aging, and temperature. That is why, more
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energy could be used for a different power profile as some energy is still stored

in the battery.

The terminal voltage can be represented by OCV and polarization voltage sep-

arately according to the law of thermodynamics [24]. Whereas the OCV can be

assumed to be approximately independent of operational factors, UP strongly

depends on them [25]. The mathematical transformation of equation (5) allows

the SoE to be represented differently in equation (6) [24, 26].

SoEusable(λ, t) =
Estored(t)− Edissipation(λ, t)

Emax,stored − Emax,dissipation(λ)
(6)
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Eusable
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Figure 5: The usable energy calculated by integrating the terminal voltage over charge amount;
Eusable(t) (green area) is the energy from the actual time until no more energy can be used
for the given power. The maximum usable energy (hatched area), Emax,usable, is the usable
energy between the full and empty state of the cell. The specifications given by the manufac-
turer define the full and empty states. SoCDCH considers that the end-of-discharge voltage
is reached earlier for the given constant current discharge conditions. During the discharging
process, the maximum stored energy of the tested cell is 12.25Wh, differing from the maxi-
mum usable energy, which is 10.83Wh for the given discharge conditions.
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Methods for SoE Estimation

For the estimation of the SoE, well-known methods such as SoC estimation

methods can be applied, which estimate the usable energy or the stored energy.

This section presents and critically reviews existing methods specific to SoE

estimation that are divided into power-integral methods, model-based methods,

and data-driven methods.

Power-Integral Method

The simplest method for estimating the residual energy is the so-called

power-integral method, first introduced by Mamadou et al. [27, 28]. It is in-

spired by the Coulomb counting method for the SoC estimation [12, 29, 30] and

is an open-loop approach. If current and voltage can be measured precisely and

an initial value is known, the SoE can be directly estimated via equation (7).

[30]

SoE(k) = SoE(k − 1) +
I(k) · U(k)

Eref
(7)

Since the voltage and current values are affected by measurement deviations,

estimation errors are accumulated over time, requiring a re-calibration in the

application. Another shortcoming is that the initial SoE needs to be known

accurately, and the relationship between the OCV and the SoE needs to be

known precisely to adjust the initial value [30]. Additionally, the reference

value, Eref , has to be feasibly chosen. To avoid bias for residual usable energy

estimation, the reference value must consider internal and external influencing

factors comprising future values and needs to be corrected after a specific time

[30]. The advantage of this SoE estimation method is the simple implementation

on a BMS.

Model-based Methods

To overcome the weaknesses of the power-integral method, model-based

methods can be applied. They usually employ a simplified battery model to con-

nect the estimated parameters with the state [12, 31]. It is a two-step process,
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as shown in Figure 6. First, the parameters of a battery model are determined.
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Figure 6: Schematics of a model-based estimation of SoE. Most SoE estimation algorithms
use a cell model to estimate the voltage, which is then used for SoE estimation. The param-
eters of the model depend on current, temperature, and SoE. They are either identified with
the help of a parameter identification algorithm or underlying look-up tables. Based on the
error between the measured and estimated terminal voltage, the SoE is adapted. Since direct
model-based methods directly estimate the SoE from the cell voltage, there is no need for an
additional estimation algorithm based on the voltage estimation error.

Second, the SoE is estimated with the help of a state estimation algorithm by

comparing the estimated output of the battery model, the cell’s terminal volt-

age, with the measured output. The model inputs the measured signals, such as

current, voltage, and temperature. The corrected SoE is used as a new input for

calculating the output in the next step. Model-based methods can be supported

by predicting the operation of the vehicle with the help of navigation systems:

If the future route is known, the terminal voltage can be predicted based on

the model with current and temperature profiles as input. This is an excellent

opportunity for model-based methods using operational strategy prediction to

improve the estimation of SoE. The disadvantage is that an accurate model is

needed to predict the terminal voltage precisely. In the following, direct model-

based methods and Kalman filters for SoE estimation are introduced in more

detail.
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Direct Model-based Estimation

The SoE can be directly determined based on the estimated parameters of

the battery model as proposed in [32] and [23]. Zhai et al. [32] use a Thevenin

model to determine the battery’s terminal voltage and directly use their pro-

posed definition of the SoE with the estimated terminal voltage as input. The

model parameters are dependent on the temperature. Liu et al. [23] also use

a Thevenin model to estimate the terminal voltage based on SoC, resistance,

and a given current profile. The remaining energy is calculated by integrating

the product of predicted current and voltage at a specific future time point.

Furthermore, Liu et al. analyze different model parameter updating routes [23].

An advantage of the direct method based on a battery model is the comparably

low computational cost since an additional algorithm that corrects the inherent

error of the respective model is not applied. However, it should be noted that

in the scope of the open-loop estimation, the accuracy of the SoE estimation

solely depends on the accuracy of the underlying battery model [12], and the

operating strategy needs to be known.

Kalman Filters

In [8, 14, 26, 33, 34], the SoE is estimated based on the extended Kalman

filter (EKF). In [33], Wang et al. estimate the State of stored Energy with a

Thevenin model, whereas the model parameters are identified with the least-

square algorithm [33]. Zhang et al. [14] also determine the SoE by estimating

the OCV. The SoE is estimated based on a mathematical relationship between

the SoE and the estimated OCV. The methods benefit from a low complex-

ity but may suffer accuracy, especially for dynamic, real operations. Li et al.

[26, 34] propose an SoE estimation method based on a physics-based fractional

order model with variable solid-state diffusivity, which additionally takes elec-

trolyte dynamics into account. The remaining energy loss is estimated based

on load current, squared load current, SoC, and resistance. Since the dissi-

pation energy is a function of internal resistance, current, and squared current,

only two assumptions are required, which is especially applicable for online SoE
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estimation. Xia et al. [8] additionally apply an adaptive noise correction for

the parameter estimation of the underlying battery model, considering that the

state parameters are highly dependent on temperature. The authors show that

the error is comparably small, even for different temperatures and erroneous ini-

tial states. Since the terminal voltage can be estimated comparably accurately

and robustly, the battery model is a starting point for different estimation meth-

ods. The authors use the battery model to co-estimate SoE and SoC, which

is applicable for implementation on a BMS. Zhang et al. [30] use an EKF and

additionally address the challenge of the changing OCV and SoE relationship

due to battery aging with the help of partial reconstruction of the specific re-

lationship during operation. During operation, more reconstruction points are

added to describe the OCV(SoE) relationship in a broader range allowing for

the inherent consideration of aging in the underlying battery model.

To overcome any disadvantages of the EKF, such as a high estimation error of a

highly non-linear system since an EKF only considers the first-order derivative

of the Taylor expansion, the unscented Kalman filter (UKF) based on the un-

scented transformation is applied [35]. In [16], Zhang et al. estimate the SoE

with an extended Thevenin model. The parameters are estimated via Parti-

cle Swarm Optimization (PSO) since the accuracy is higher compared to the

RLS method. The computation burden is acceptable because the PSO does

not run at each micro time length. Since a BMS is subject to noise that in-

fluences the accurate estimation of the SoE, Wei et al. [20] lay a particular

focus on the unbiased estimation of the model parameters with the help of the

Bias Compensating RLS technique to increase the robustness of the estimation.

A disadvantage of the method is the cost of a higher computational burden.

Zhang et al. [17] propose an SoE estimation method that can be used in a

battery system considering cell inconsistencies. The method additionally takes

into account the temperature of the specific cell. Chen et al. [24] propose a

two-step process for State of usable Energy estimation. First, they estimate the

State of stored Energy with the help of a UKF. Then, they estimate the residual

usable energy by considering the energy conversion efficiency. To calculate the
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energy conversion efficiency, the authors suggest predicting the future velocity

with Markov chains. The predicted load current, as well as the State of stored

Energy, can be mapped to the energy conversion efficiency. This approach takes

advantage of the fact that the stored energy can be accurately estimated with

known methods, such as the UKF. A disadvantage is that the approach requires

experiments to show the relationship between energy conversion efficiency, load

current, and State of stored Energy. This can lead to inaccuracies, especially

with progressive aging.

To reduce the parameters of the filter, the central difference Kalman filter

(CDKF) is introduced for SoE estimation by [13]. Xi et al. [13] propose a

square root (SR) CDKF. Furthermore, the voltage hysteresis potential is con-

sidered in the battery model modeled with the help of a second voltage source in

the Thevenin model. Since temperature strongly influences dissipation energy,

the authors suggest a thermal evolution model to include temperature effects.

The proposed model is especially interesting for cells with a high hysteresis ef-

fect. He et al. [7] also apply a CDKF for the online SoE estimation. In contrast,

they use an n-order hysteresis Gaussian model. The Genetic Algorithm deter-

mines the model parameters, which identifies an optimum parameter group for

the model’s coefficients. The authors state that the error for erroneous initial

SoEs is comparably low. Since the computational burden is very high, it does

not apply to real applications. Kalman filters can also be used as a first stage

for so-called hybrid estimation methods. Wang et al. have reviewed such hybrid

methods in [36]. Such methods take advantage of the fast convergence of KF

methods on the one hand and the high adaptability over the lifetime of data-

driven methods on the other hand. In [37], this method was demonstrated using

an EKF and an artificial neural network. Combining both methods provided

an absolute deviation from the reference value below 1%. Since this has yet to

be demonstrated on SoE estimation, it potentially may be a promising method

for future publications.
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Data-driven Methods

As highlighted by Zhang et al. [38], data-driven methods do not consider a

battery cell’s internal dynamics. These methods model the input and output

relationship as a black box, relying solely on the processed data [38]. The three

primary steps involved in the data-driven approach are the following [11],[39]:

data collection and feature extraction, model training, and estimation. An ad-

vantage is that these approaches do not require a comprehensive understanding

of the battery cell’s electrochemical processes and internal mechanisms [38].

Nonetheless, the high non-linearity of the cell that a simplified ECM cannot

model can be captured. However, an extensive data set is needed [40],[38], and

the method’s transferability to other cells is usually limited. The data quality

also dramatically impacts the performance of the data-driven method [38]. An

advantage is that as cloud-based analytics advance, we will be able to save the

data in the cloud, perform more in-depth analyses, and use the data to train

the model.

Liu et al. [41] use a back-propagation neural network (BPNN) to estimate the

residual usable energy directly. The BPNN takes losses on the internal resis-

tance, electrochemical reactions, and the change of the OCV during operation

into account. In the input layer, current, temperature, and battery terminal

voltage are used to estimate the SoE in the output layer. For training, data

generated under various constant currents and temperatures are used. The per-

formance is verified with a constant current discharge at a constant temperature.

Dong et al. [22] propose a hybrid method combining the neural network and

Particle Filter (PF). They use a Wavelet Neural Network (WNN) with battery

terminal voltage from the previous time step, the estimated SoE, current, and

temperature as inputs and outputs of the battery terminal voltage at the cur-

rent time step. The WNN is trained with various partially constant current

profiles under constant temperature conditions. To verify the performance of

the WNN, constant-current discharge data is used under dynamic temperature

conditions, and dynamic discharge data is used under constant temperatures.

The PF is then used to estimate the SoE [22]. Both approaches are not validated
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for real driving or charging profiles; thus, their applicability in the real world

is questionable. Ma et al. [42] use a long short-term memory neural network

to estimate SoC and SoE simultaneously for different and varying operating

conditions. They test their algorithm for different temperatures, materials, and

noise interference. The authors point out that their method is robust but also

state that the network needs to be updated to consider progressive aging.

Opportunities and Challenges of SoE Estimation

The challenges and opportunities of SoE estimation differ significantly for

each category: Whereas the challenges and opportunities for the SoEstored are

similar to those of the SoC estimation, the SoEusable estimation additionally

requires predicting the future operating strategy making an accurate estimation

difficult.

An opportunity arises for estimating the SoEstored when a well-performing es-

timation of the SoC is available [43]. In this case, the SoC can be utilized

to determine the residual stored energy through a look-up table. This already

improves the energy estimation compared to the SoC without incorporating

elaborate models and estimation methods, making it a very promising method

for online SoE diagnostics since it does not have high computational complex-

ity. While this method offers advantages, standalone SoEstored algorithms en-

counter a significant challenge in precisely estimating the OCV. This challenge

becomes particularly significant when dealing with different chemistries, mainly

when hysteresis and a flat OCV occur. Therefore, developing reliable OCV

estimation techniques to enhance the overall residual stored energy estimation

accuracy becomes essential and requires further research. Additionally, combin-

ing different estimation methods into a hybrid approach is possible, achieving

improved SoE estimation without substantially increasing computational com-

plexity. For instance, the power-integral approach can be complemented by

OCV re-calibration, enhancing the accuracy of stored energy estimation while

keeping the computational cost manageable. Furthermore, individual methods

can be combined into a hybrid method to improve SoE estimation without
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significantly increasing the overall computational cost. For example, OCV re-

calibration can potentially complement the power-integral approach without

increasing the complexity of stored energy estimation.

In the scope of remaining usable energy estimation, the SoEusable and SoC can

be estimated simultaneously [8].

Therefore, for model-based methods, only one battery model needs to be pa-

rameterized and online-updated to estimate the SoC and SoE reducing the

complexity of the estimations [8]. Since the SoEusable requires the estimation

of the cell’s internal resistance, simultaneous estimation of SoEusable and the

State of Health (SoH) can potentially be performed. Additionally, capacity esti-

mation has already been combined with SoE estimation in the literature. Long

et al. develop in [44] a framework for simultaneous SoH and SoE estimation

with a joint battery model. The SoE and the SoH are estimated with the EKF,

demonstrating the potential of coupling existing model-based state estimation

techniques coupled with SoE estimation. However, it remains challenging for

residual usable energy estimation that the energy is not solely dependent on the

characteristics of the cell but on the future operating strategy, which is unknown

at present. To illustrate this challenge, four scenarios are shown schematically

in Figure 7. For simplicity, in all four figures, a change in operation strategy is

made at time t during a constant current discharge. In Figure 7(a), a higher

absolute constant discharge current is applied at time t. This leads to a decrease

in usable energy, depicted as Eusable,new, compared to Eusable, the green area,

when the operation strategy does not change. In Figure 7(b), the cell is dis-

charged with a constant current of lower magnitude so that the remaining usable

energy increases. It should be noted that a smaller current results in a larger

remaining usable energy. Figure 7(c) shows the change in remaining usable en-

ergy when the cell is fully relaxed at time t. Relaxation does not change the

remaining charge amount. However, the instantaneous voltage reaches the value

of the OCV. If the cell is discharged with the same constant current, the voltage

approaches the discharge voltage. Since the voltage does not directly equal the

value of the corresponding discharge voltage, the remaining usable energy is
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slightly greater. Figure 7(d) depicts a constant current charge at time t. The

charge increases the remaining charge amount. If the cell is discharged again

with the same constant current, the remaining usable energy is larger since, on

the one hand, there is more charge. On the other hand, more energy is usable

due to the slow approach of the voltage to the discharge voltage. The scenarios

illustrate that the remaining usable energy is a function of the cell’s properties

and, moreover, of the operating conditions. Accurate estimation is only possi-

ble if the operating conditions are known until complete discharge, limiting the

estimation by the given assumptions of the operating strategy. One possibility

to tackle this issue is to weigh predicted average values, as Li et al. [26] suggest,

as well as in operation experienced values. Furthermore, the prediction of the

future current with Markov chains based on real-driving data, as Chen et al.

[24] suggest, is feasible for online applications. However, one should keep in

mind that the SoEusable estimation requires a dynamic evaluation scale and,

unlike other state estimates, due to the dependence of the estimate on future

operations, it is specifically challenging to provide fixed error bounds. In gen-

eral, SoEusable estimation comes with higher computational costs compared to

SoEstored estimation since it does not solely rely on the specific battery’s char-

acteristics. However, in the case that the future operating strategy is known,

i.e., the route of a battery electric vehicle, the estimation of maximum usable

energy can be accurate with the help of standard diagnostics methods.

Time series-based field data are also particularly important in the context of

SoE estimation. As cloud computing technology improves, we will be able to

store and analyze this field data more efficiently in the cloud, using machine

learning techniques to improve our ability to estimate the remaining usable en-

ergy. However, estimating the SoE from field data can be challenging due to

small changes in DoD, noisy measurements, and fluctuating temperatures.
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Concluding Remarks

The SoE of a lithium-ion battery cell certainly is essential for residual en-

ergy estimation and has significant advantages compared to traditional metrics.

This work analyzes common definitions and estimation methods for SoE es-

timation. We propose two novel definitions that are highly applicable to the

implementation on a BMS and experimentally verify our findings. We discuss

opportunities and challenges associated with residual energy estimation. The

main contributions of this work can be summarized as follows:

1. Lucid classification of existing SoE definitions: For the first time, various

SoE definitions from the literature are critically reviewed and classified

into two concepts: the State of stored Energy and the State of usable

Energy. The State of stored Energy correlates with the residual stored

energy, therefore; neglecting the losses during operation. In contrast, the

State of usable Energy correlates with the residual usable energy and

considers internal and external influences. The latter is a critical state for

the residual driving range of a battery electric vehicle. The classification of

existing definitions enables a deeper understanding of the different aspects

of energy within a battery cell and their implications and limitations for

residual energy estimation.

2. Applicable, novel SoE definitions for BMS implementation: Based on the

critical evaluation of the literature, two novel definitions for the SoE are

proposed that are highly applicable to the implementation on a BMS. Un-

like common SoE definitions, the proposed definitions directly relate to

the battery characteristics and avoid distortion. Furthermore, these def-

initions address the specific requirements and challenges associated with

SoE estimation for real-world applications, providing valuable guidance

for algorithm development.

3. Experimental validation and quantitative analysis: We conducted various

experiments to verify our results and show that for the tested NCA/C+Si

battery cell, the difference between SoC and SoEstored has an absolute
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deviation of 3%. Our experiments reinforce the accuracy and reliability of

the proposed SoE definitions, contributing to their practical significance

and emphasizing the advantage over traditional methods.

4. Direct comparison between SoC and SoEstored: A mathematical rela-

tionship between the SoC and the residual stored has been presented for

the first time. This relationship can be used to determine the remaining

stored energy in the presence of a sufficiently well-performing SoC estima-

tor. This novel mathematical understanding will enhance the precision of

residual energy estimation in practical applications with the help of SoC.

5. Comprehensive, critical analysis of opportunities and challenges of SoE

estimation: We review implementations of a wide range of SoE estima-

tion techniques and discuss opportunities and challenges of SoE estima-

tion. Whereas the challenges for estimating the residual stored energy are

similar to those for SoC estimation, one challenge for residual usable en-

ergy estimation remains that the accuracy depends not only on the cell’s

properties but also on the future operation strategy. Due to the inherent

uncertainty associated with future operating conditions, evaluating the

quality of the SoEusable estimation within fixed error bounds is challeng-

ing and needs further research. However, the quality of the residual usable

energy estimation can be improved by predicted current or temperature

profiles that are updated during operation.

Overall, accurate estimation of the SoE has the potential to optimize the perfor-

mance and efficiency of batteries, offering, as quantified, numerous advantages

over traditional methods. In order to develop reliable approaches for estimat-

ing the residual energy, it is crucial to have a comprehensive understanding of

the limitations and potential errors in the SoE definition. This work presents

such an understanding, serving as a foundation for accurate and meaningful

comparisons of experimental results in SoE estimation. Establishing this solid

foundation paves the way for future advancements in the field of residual energy

estimation.
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Figure 7: Schematics of the change in usable energy during constant current discharging
and charging in dependency of different operating scenarios at time t. (a) Discharging with a
higher absolute constant current. The usable energy decreases when the current rate increases
(b) Discharging with a lower absolute constant current. The usable energy increases when the
discharge current rate decreases. (c) Temporary relaxation of the cell. During relaxation, the
charge amount in the battery cell does not change, but the terminal voltage converges to the
OCV. When the discharge process continues, the voltage converges to the discharge voltage.
(d) Charging with a constant current, then continuing the discharging process. Because of
the instant charging of the battery cell, the voltage increases and charges the battery leading
to more charge amount to the battery. When the discharge process continues, the terminal
voltage decreases and converges back to the discharge voltage.
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