001024570 001__ 1024570
001024570 005__ 20250203103132.0
001024570 0247_ $$2doi$$a10.1109/ICNF57520.2023.10472768
001024570 037__ $$aFZJ-2024-02246
001024570 1001_ $$0P:(DE-HGF)0$$aPetrychuk, Mykhailo$$b0
001024570 1112_ $$a2023 International Conference on Noise and Fluctuations (ICNF)$$cGrenoble$$d2023-10-17 - 2023-10-20$$wFrance
001024570 245__ $$aOptically Controlled Nanoscale FET Toward Advanced Biosensing Applications
001024570 260__ $$bIEEE$$c2023
001024570 300__ $$a10472768-1-4
001024570 3367_ $$2ORCID$$aCONFERENCE_PAPER
001024570 3367_ $$033$$2EndNote$$aConference Paper
001024570 3367_ $$2BibTeX$$aINPROCEEDINGS
001024570 3367_ $$2DRIVER$$aconferenceObject
001024570 3367_ $$2DataCite$$aOutput Types/Conference Paper
001024570 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1712569904_22226
001024570 520__ $$aSensitivity enhancement is an important aspect of the development of ultrasensitive biosensors. Single-trap phenomena observed in liquid-gated nanostructures provide a new opportunity to enhance the sensitivity of nanoscale biosensors. The impact of light excitation on properties of a unique nanowire (NW) field-effect transistor (FET) structures utilizing single trap phenomena are studied. We revealed that parameters of single trap and interface phenomena in NW FET can be effectively tuned in a controlled way using optical excitation. Under the influence of optical radiation, the population of discrete levels is redistributed, which allows to control of their energy characteristics and, as a result, establishes the optimal sensitive regimes. A model of the potential profile description for carriers in NW structure is discussed to describe the mechanisms of capture dynamics in fabricated NW FETs and to control sensitivity in advanced biosensors.
001024570 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001024570 588__ $$aDataset connected to CrossRef Conference
001024570 7001_ $$0P:(DE-HGF)0$$aFujiwara, Akira$$b1
001024570 7001_ $$0P:(DE-Juel1)186785$$aPustovyi, Denys$$b2
001024570 7001_ $$0P:(DE-Juel1)190570$$aZhang, Yongqiang$$b3
001024570 7001_ $$0P:(DE-Juel1)175511$$aLong, Hanlin$$b4
001024570 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, Svetlana$$b5$$eCorresponding author
001024570 773__ $$a10.1109/ICNF57520.2023.10472768
001024570 8564_ $$uhttps://juser.fz-juelich.de/record/1024570/files/IEEE-10472768.pdf$$yRestricted
001024570 8564_ $$uhttps://juser.fz-juelich.de/record/1024570/files/IEEE-10472768.gif?subformat=icon$$xicon$$yRestricted
001024570 8564_ $$uhttps://juser.fz-juelich.de/record/1024570/files/IEEE-10472768.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024570 8564_ $$uhttps://juser.fz-juelich.de/record/1024570/files/IEEE-10472768.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024570 8564_ $$uhttps://juser.fz-juelich.de/record/1024570/files/IEEE-10472768.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024570 909CO $$ooai:juser.fz-juelich.de:1024570$$pVDB
001024570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001024570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186785$$aForschungszentrum Jülich$$b2$$kFZJ
001024570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190570$$aForschungszentrum Jülich$$b3$$kFZJ
001024570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175511$$aForschungszentrum Jülich$$b4$$kFZJ
001024570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b5$$kFZJ
001024570 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001024570 9141_ $$y2024
001024570 920__ $$lyes
001024570 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001024570 980__ $$acontrib
001024570 980__ $$aVDB
001024570 980__ $$aI:(DE-Juel1)IBI-3-20200312
001024570 980__ $$aUNRESTRICTED