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We develop a photonic description of short, one-dimensional electromagnetic pulses,
specifically in the language of electrical transmission lines. Current practice in quantum
technology, using arbitrary waveform generators, can readily produce very short, few-
cycle pulses in a very-low-noise, low-temperature setting. We argue that these systems
attain the limit of producing pure coherent quantum states, in which the vacuum has
been displaced for a short time, and therefore over a short spatial extent. When the
pulse is bipolar, that is, the integrated voltage of the pulse is zero, then the state can
be described by the finite displacement of a single mode. Therefore there is a definite
mean number of photons, but which have neither a well-defined frequency nor position.
Due to the Paley–Wiener theorem, the two-component photon “wavefunction” of this
mode, while somewhat localized, is not strictly bounded in space even if the vacuum
displacement that defines it is bounded. When the pulse is unipolar, no photonic
description is possible—the photon number can be considered to be divergent. We
consider properties that photon counters and quantum non-demolition detectors
must have to optimally convert and detect the photons in several example pulses.
We develop a conceptual test system for implementing short-pulse quantum key
distribution, building on the design of a recently achieved Bell’s theorem test in a
cryogenic microwave setup.

coherent state | photons | Paley–Wiener theorem | short pulse | quantum cryptography

The arbitrary waveform generator (AWG) (1) is a key part of the instrumentation of
many present-day quantum-technology devices. In a solid-state quantum computer, it
is used, together with other microwave components like RF signal generators, to deliver
controlling radiation, via transmission lines, to the immediate vicinity of the qubits.
Appropriately pulsed signals vary the contributions in the computer’s Hamiltonian, or
cause quantum measurements to be performed. From this point of view, they are part of
the classical apparatus that manipulates the quantum world of the quantum computer.

But we can alter our point of view and ask, what quantum states describe the signals
that the AWG can produce? We will in particular address the question, what is the
nature of the photons present in an AWG signal? We will focus on pulsed signals with a
definite starting and stopping time, so that we expect that photons will appear in a burst.
But what is the starting and ending time of this burst of photons? How many photons
are there, and what are their attributes (e.g., frequency)? This paper will give a definite
prescription for calculating these properties.

While the AWG can emit a strictly localized pulse in the sense of its voltage profile
V (x), we confirm that despite this, the photons this pulse contains cannot be deemed
to be strictly localized. This effect has been long discussed in field theory (2, 3). Recent
work has begun to explore the surprising nature of localization of 1D electromagnetic
pulses (4). Previous work on the “wavefunction of the photon” (5) establishes that some
degree of localization is possible (6), but is constrained by the Paley–Wiener theorem
(7), from which one can conclude that the photon wavefunction must be nonzero over
all space. This can be seen explicitly in our calculations, where these wavefunctions must
have power-law tails. This is by contrast to the case of photons in 3D, where exponential
localization is possible (8).

We will also calculate the relationship between the voltage pulse V (x) and the
mean total number of photons 〈n〉, with some interesting implications for quantum
communication protocols. If V (x) is unipolar, i.e., has a nonzero integrated value, then
〈n〉 is undefined: Due to an infrared divergence, the pulse can be viewed as having
an unbounded photon number. Thus, such a signal is never appropriate for quantum
cryptography (9): No matter how small V (x) is, the pulse is susceptible, if Eve has an
optimized set of instruments, to a splitting attack followed by re-amplification. For a
bipolar pulse (

∫
V (x)dx = 0), 〈n〉 is finite, but its dependence on the pulse shape is

nontrivial: We show an example of a split pulse (two parts of a pulse separated by distance
w) where naive arguments based on mean frequency would estimate a photon number
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independent ofw, while in fact 〈n〉 goes like logw. Thus, an Alice
and Bob with only knowledge of standard frequency-selective
detectors may conclude that a pulse is dim, 〈n〉 < 1, while the
pulse may be, for Eve with an optimal detector, quite bright
and easily attackable. The final part of our paper will discuss
the attributes that an optimal photon detector must have in
the pulsed setting and will introduce a conceptual short-pulse
quantum key distribution system.

Transmission Line Basics

The AWG is set up to deliver an arbitrary voltage functionVout(t)
at the output terminals. Arbitrary means that the voltage, while
a continuous function of time, has a different, arbitrarily chosen
value every 250 ps or so (some AWGs have faster “sampling
rates”). Thus, its frequency content will be in the microwave
band (or lower). While the AWG signal is often mixed with
that from an ac signal generator to modulate a tone of a definite
frequency, it can be, and in some cases is, simply launched into
a transmission line.

The fundamental parameters of this transmission line, which
will be relevant for subsequent analysis, can be taken to be
the wave impedance Z0 and the velocity v. We will also make
reference to an alternative pair of parameters `, the inductance of
the line per unit length, and c, the capacitance per unit length.
These parameters are interrelated by the formulas Z0 =

√
`/c,

v = 1/
√

`c.
Classically, the transmission line transmits waveforms of any

shape with velocity +v or −v. Of course, the output of the
AWG moves in one direction only on a perfect transmission
line (let us call it right moving), so it contributes a time-evolved
voltage V (x, t) = Vout(t − x/v) for x ≥ 0. The transmission
line also carries a current I(x, t), which in the right-moving
case is just proportional to V (x, t) with proportionality 1/Z0.
But let us review the general relation which results if signals
with components with both velocity +v and −v are present.
This will occur if there are reflections due to imperfections or
discontinuities in the transmission line. It is readily shown (10)
that if the voltage signal is given by the general expression

V (x, t) = fR(t − x/v) + fL(t + x/v), [1]

then the current function is

I(x, t) =
1
Z0

(fR(t − x/v)− fL(t + x/v)) . [2]

This means that at any instant of time, V (x, t = 0) and I(x, t =
0) can be two entirely independent functions of x, but with
subsequent time evolution determined by the two functions

fR(t − x/v) =
1
2
(V (x, 0) + Z0I(x, 0)), [3]

fL(t − x/v) =
1
2
(V (x, 0)− Z0I(x, 0)). [4]

For the signal as emitted by the AWG, fL = 0.

Quantum-State Description of a Pulse Emitted
by an AWG
In turning to the quantum mechanics of the arbitrary waveform
generator, we emphasize that we are not concerned with
interesting new variants of this device such as the Q-AWG (11),

and we are not concerned with AWGs that modulate the emission
of higher-frequency (terrahertz or optical) photons. We look only
at the radiation emitted by a conventional AWG as used in
microwave-band experiments.

We wish to interpret the classical field quantities discussed in
Sec. as expectation values of particular quantum field operators in
a quantum state. We will pursue this using the quantization pro-
cedure employed in circuit quantum electrodynamics (cQED).
Following the scheme reviewed in ref. 12, we take the two fields
describing the transmission line circuit (cf. Fig. 3 of ref. 12) to be
the flux field Φ̂(x) and the charge-density field Q̂(x). These are
Hermitian fields, with commutator [Φ̂(x), Q̂(x′)] = iℏ�(x−x′),
with which we express the transmission-line Hamiltonian

H =
∫
∞

−∞

dx
{

1
2c
Q̂(x)2 +

1
2`

[∂xΦ̂(x)]2
}

. [5]

When we consider the possible quantum-state description of
a given AWG signal, we must constrain the state such that it
has the appropriate expectation values of these operators. We can
use basic circuit relations to give the needed relation between
the expectation values of our quantum fields Φ̂ and Q̂ and the
classical field variables V and I . We work at a particular time,
which we call zero:

'(x) ≡ 〈Φ̂(x)〉 = −`

∫
I(x, t = 0)dx, [6]

q(x) ≡ 〈Q̂(x)〉 = c V (x, t = 0). [7]

The first equation can equivalently be written d'(x)/dx =
−`I(x), which is understood by noting that d'(x) is the
magnetic flux produced by current I flowing through inductor
`dx. We present Eq. 6 as an indefinite integral, leaving for later
the important discussion of the appropriate integration constant.

With these preliminaries, we consider the question: What is
the quantum state emitted by the AWG? Besides the fact that it
has certain specified expectation values, we know very little about
it. Being emitted by a macroscopic device, it is very likely to be
a mixed state. We assume that the emission does not vary very
much from shot to shot, constraining somewhat the properties
of this mixed state. In particular, it should not have too large a
value of the variances of the field quantities.

We speculate no further on what this quantum state might
be, but we consider further a very common use of this emitted
state (13): It is passed into a region of very low temperature,
and it is attenuated very strongly (14). Ideally, the attenuator
diminishes the amplitude of all (frequency) modes equally, and
is reflectionless—the textbook resistive-tee attenuator has these
properties (10). Being very cold, the attenuator emits a small flux
of thermal photons into the transmission line.

Under these conditions, we can say something more definite
about the likely state of an AWG pulse after attenuation.
According to the standard model of pure loss [(15), section 6.2.5],
the Wigner function of any state whose initial amplitude in mode
! is 〈�!〉, subject to a large loss by factor � (�� 1), approaches

W (�) =
2
�

exp (−2|� − �〈�!〉|2). [8]

This is the Wigner function of the single-mode pure coherent
state. The corrections to this will be very small so long as the SD
� of the initial state is reduced by attenuation to the half-photon
level:

��! ≲
1
2
. [9]
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Since 30 dB attenuation is common (� = 1/1, 000), such
conditions should be feasible to satisfy.

We proceed with the hypothesis that the pulsing of the AWG
results in the creation of a multimode coherent state of the sort
first introduced by Glauber (16) to discuss the quantum state
of laser radiation. The foregoing should be only considered as
a heuristic justification, rather than a rigorous proof, of this
hypothesis. It is hopefully better than the “convenient fiction” of
describing laser radiation with such a state (17). We will be quite
busy shortly in considerably sharpening the notion of the state of
photons in our hypothesized AWG pulse.

A coherent state |Ψ0〉 with the desired expectations of the field
functions q(x) and '(x) (Eqs. 6 and 7) at time t = 0 is written
as a displacement operator acting on the vacuum:

|Ψ0〉 = exp
[
i
ℏ

∫
∞

−∞

(
q(x)Φ̂(x)− '(x)Q̂(x)

)
dx
]
|0〉. [10]

We will be considering pulses for which we have set the origin of
time such that they have already traveled a considerable distance
past the attenuator, so that we can take the x integration to −∞
as indicated.

Photonic Content of Transmission Line Pulse
We now come to the central question of this paper: What are the
attributes of photons making up this state? For this, we take the
point of view that Eq. 10 is a superposition of states of different
photon numbers, but where the photons are those of a single
mode. Said mathematically, this means that we expect to be able
to rewrite Eq. 10 in the form (4)

|Ψ0〉 = exp(�b†
− �∗b)|0〉. [11]

This introduces the number � and the quantum operators b, b†.
As usual, |�|2 can be interpreted as the mean number of photons
in the pulse. The operators b, b† should have the properties
[b, b†] = 1, b|0〉 = 0. We note that this final property permits
us to rewrite the state in Eq. 11 as exp(�b†)|0〉. But it will be
convenient to proceed by matching the full displacement operator
of Eq. 11 with that of Eq. 10.

We will find that for pulses satisfying some conditions, which
we will derive, it will be possible to make this identification. If
the conditions are not satisfied, the identification will fail due to
a divergence of the displacement parameter �. Note that when
� exists, its phase can always be absorbed into the phases of the
operators b and b†, and therefore, we will take � to be positive
and real; we will see that this makes the identification of �, b,
and b† unique, when it is possible.

To get started on finding these quantities, we note that operator
�b† must be a functional of Φ̂(x) and Q̂(x), since these are the
only quantum field operators in the problem. Thus, we write

�b† =
1

2ℏ

∫
∞

−∞

(
�q(x)Φ̂(x)− �'(x)Q̂(x)

)
dx, [12]

introducing the new coefficient (c-number) functions �q(x)
and �'(x). Note that �b† can be written as a Hermitian
plus an anti-Hermitian part and that the anti-Hermitian part
is immediately given by the anti-Hermitian argument of the
exponential function in the displacement operator of Eq. 10.
Therefore, we have

Im[�q(x)] = q(x),
Im[�'(x)] = '(x). [13]

Thus, the work to be done is reduced to finding the Hermitian
part, that is, the real part of these functions.

We will make use of the eigenmode creation operators of the
infinite transmission line, which have the form (18, 19)

a†
p =

1
2
√
�ℏ

∫
∞

−∞

dx e−ipx
(√

cv|p|Φ̂(x)−
i√
cv|p|

Q̂(x)

)
. [14]

When running the wavevector p from −∞ to ∞ this set of
operators is complete—thus, the set ap spans the algebra of the
operators that annihilate the vacuum. b† should thus be taken as
a linear combination of the a†

p (i.e., integral over p) (20, 21). We
can identify this linear combination by inserting the expressions
for the quantum fields Φ̂(x) and Q̂(x) in terms of these mode
creation and annihilation operators (12):

Φ̂(x) =
1
2

∫
∞

−∞

dk

√
ℏ

�vc|k|

(
eikxa†

k + e−ikxak
)
, [15]

Q̂(x) =
i
2

∫
∞

−∞

dk

√
ℏvc|k|
�

(
eikxa†

k − e−ikxak
)

. [16]

Inserting Eqs. 15 and 16 into Eq. 10, we obtain

|Ψ0〉 = exp
[

1
2
√
�ℏ

∫
dx
∫
dk �(k, x)eikxa†

k + h.c.
]
|0〉, [17]

with the shorthand

�(k, x) ≡
√
cv|k|'(x) +

iq(x)
√
cv|k|

. [18]

Note here and in the following, if we give no integration limits,
they may be understood to be from−∞ to∞. With our rewrite
of Ψ0, the creation-operator part of the displacement operator
has been isolated here in the first term. We then get the operator
that we want by inserting Eq. 14:

�b† =
1

4�ℏ

∫
dx
∫

dy
∫

dk eik(x−y)

×

[(
cv|k|'(x) + iq(x)

)
Φ̂(y)

+
(

1
cv|k|

q(x)− i'(x)
)
Q̂(y)

]
. [19]

The anti-Hermitian parts of this expression work out easily using∫
dk eik(x−y) = 2��(x−y) and confirm the results of Eq. 13. The

two Hermitian contributions involve more complicated integrals
because of the |k| factors.* These can be worked out as follows:∫
dxdk|k|'(x) eik(x−y) =

∫
dxdk sgn(k)·k'(x)eik(x−y)

k→−k= −i
∫
dxdk sgn(k)[∂x'(x)]eik(y−x)

= −i
∫

dk sgn(k)eikyFk[∂x'(x)]

= 2�F−1
y [−i sgn(k)Fk[∂x'(x)]]

= 2�Hy[∂x'(x)], [20]

* It is in carrying out these integrals with the |k| factors without approximation that the
present analysis departs from the usual optical approximation of quantum optics; see
section 8.1.5 of ref. 22
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∫
dxdk

q(x)
|k|

eik(x−y) =
∫
dxdk

q(x)
k

sgn(k)eik(x−y)

= −i
∫
dxdk

(∫ x

−∞

dsq(s)
)

sgn(k)eik(x−y)

= i
∫
dk sgn(k)eikyFk

[∫ x

−∞

q(s)ds
]

= −2�Hy

[∫ x

−∞

q(s)ds
]

. [21]

Here, we have used Fk[f (x)] =
∫
dx e−ikx f (x), the Fourier

transform, and its inverse F−1
y [f (k)] = 1/2�

∫
dk eikyf (k), and

the Hilbert transform

Hy[f (x)] =
1
�
P
∫
∞

−∞

dx
f (x)
x − y

. [22]

Properties of this transform, and in particular its relation to the
Fourier transform as used in Eqs. 20 and 21, can be found in
chapter 15 of ref. 23. Note also that Eqs. 20 and 21 have used
integrations by parts, in particular Eq. 21 uses it in the form∫

∞

−∞

dx∂x
[(∫ x

−∞

dsq(s)
)
eikx
]

=
∫
∞

−∞

dxq(x)eikx + ik
∫
∞

−∞

dx
(∫ x

−∞

dsq(s)
)
eikx. [23]

In using this (after dividing by ik), we require the left-hand
side to be zero, which imposes the nontrivial condition∫

∞

−∞

dsq(s) = 0 [24]

on AWG pulses that can be studied with our analysis. The
other integration by parts used in Eq. 20 leads to the additional
condition (it is here that we fix the integration constant of Eq. 6)

'(x = ±∞) = 0. [25]

We simplify conditions [24] and [25] later for the case of right-
traveling AWG pulse waveforms. Note that these conditions are
not merely a formality: If they are not satisfied the photonic
representation of the pulse, Eq. 11, does not exist. We interpret
this to mean that, if Eqs. 24 and 25 are not satisfied, then �2 (the
mean photon number) diverges.

When our photonic representation exists, we now have a
complete solution for the operator in Eq. 12; the coefficient
functions are

�q(x) = Hx[cv∂y'(y)] + iq(x), [26]

�'(x) = Hx

[
1
cv

∫ y

−∞

dsq(s)
]

+ i'(x). [27]

We can also get a general expression for �2, the expected number
of photons in the pulse. We impose the condition [b, b†] = 1,
fixing � from the value of the commutator of the two terms in
Eq. 17, and use [ak, a

′†
k ] = �(k − k′). We obtain

�2 =
1

4�ℏ

∫
dk

(
cv|k| ·

∣∣Fk['(x)]
∣∣2 +

∣∣Fk[q(x)]
∣∣2

cv|k|

)
. [28]

Besides being manifestly positive, two other properties of �2 that
we confirm are that �2 is a constant under time evolution, and
that �2 is additive, that is, it is the sum of a left- and right-moving
contribution.

Right-Moving Pulses
Eqs. 26–28 can be considered a final result, and we will examine
the surprising consequences of these formulas in several examples.
But for these examples, we will impose the further condition
discussed earlier that the pulse is right-moving. This results in an
interesting simplification of the expressions for �q, �', and �.

From Eq. 4, the right-moving condition is

V (x) = Z0I(x). [29]

Using Eqs. 6 and 7, we can then determine both our functions
q(x) and '(x) solely from V (x):

q(x) = cV (x), [30]

'(x) = −
1
v

∫ x

−∞

dsV (s). [31]

Note that these right-mover conditions also reduce the two
conditions Eqs. 24 and 25 for the validity of the photonic
representation of the state Eq. 11 to the single condition∫

∞

−∞

dsV (s) = 0. [32]

Since an AWG can readily create a pulse with a nonzero average
V , this is a significant restriction.

Applying the right-moving conditions Eqs. 30 and 31, our
coefficient functions �q and �', and the displacement amplitude
�, take the simplified form

�q(x) = −Hx[cV (y)] + icV (x), [33]

�'(x) = Hx

[
1
v

∫ y

−∞

dsV (s)
]
−

i
v

∫ x

−∞

dsV (s), [34]

�2 =
1

2�ℏ
c
v

∫
dk
|k|

∣∣∣∣Fk[V (x)]
∣∣∣∣2 . [35]

We get an alternative expression for �2 by doing the k integral
in Eq. 35. Using also the bipolar condition on V (x), Eq. 32, we
get

�2 =
1
�ℏ

c
v

∫ ∫
dxdyV (x)V (y) ln(|x − y|). [36]

This equation has the appealing form as a quadratic integral
expression in V (x) with a translationally invariant kernel, and
is quite practical for explicit calculations. Bipolarity also makes
this scale invariant, i.e., independent of the units in which x
and y are measured. A similar simplification of the more general
expression for �2, Eq. 28, can be attempted, but in this case, the
translationally invariant kernel multiplying '(x)'(y) is highly
singular and not practical for calculations.

Combinations of the form in �q and �' in Eqs. 33 and 34
have a special name in signal processing theory [chapter 15,
(23)]—they are called analytic signals (see also discussions in refs.
5, 6, and 24). In particular, the function �q is (ic) times the
analytic signal of the waveform V (x), while the function �' is
(−i/v) times the analytic signal of the once-integrated waveform∫ x
−∞

dsV (s).

Examples
We only look at toy examples here, realistic pulses could be
analyzed with the aid of modern algorithms for computing the
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Hilbert transform (25). We begin with a simple, bipolar, right-
moving square voltage pulse (Fig. 1A). We must have its integral
(Fig. 1B), and their Hilbert transforms (Fig. 1 C and D). Note
a crucial property of these Hilbert transforms, which is that they
extend beyond the support of the voltage pulse. In fact, they are
nonzero all the way to infinity. This is a mandatory property of the
Hilbert transform of any bounded-support function, expressed as
the Paley–Wiener theorem of signal processing (7). This property
will be key in the considerations of how these photons are
optimally measured, discussed in the next section.

For the simple example voltage pulse of Fig. 1A, one gets the
result

�2 =
12 ln ( 27

16 )x2
0V

2
0

�ℏ
c
v
. [37]

We note some of the scaling properties of this result. Recall that
�2 is the expectation value of the photon number of our coherent
state. We note

〈n〉 = �2 = C
V 2

0 x
2
0

ℏ
1

v2Z0
= C

1
ℏ
·
V 2

0 ttr
Z0
· ttr . [38]

Here, C is some constant and ttr = x0/v sets the scale of the
transit time of the pulse. The last part of Eq. 38 shows that this
expression can be viewed as being in the familiar form E/ℏ!,
where E , the energy of the pulse, goes as V 2

0 ttr/Z0, and ! is
identified with t−1

tr .
For the next example, we introduce a train of two pulses similar

to Fig. 1; this new double pulse is shown in Fig. 2. But note that
in detail Figs. 1 and 2 are different, and, crucially, each of the
two pulses in Fig. 2 does not individually integrate to zero. But,
because the second pulse is inverted compared to the first, the
integral over both is zero. It is clear from above that these two

C D

A B

Fig. 1. Contributions to the photonic representation Eqs. 10 and 12 of a
simple transmission-line pulse. x0 is an arbitrary length scale; the waveforms
shown are independent of x0. (A) Assumed charge density (or equivalently
voltage) form of the pulse. (B) Flux field (or also current field) for which
the pulse of part (A) is a right-mover. (C) Hilbert transform of part (A). Note
that, consistent with the Paley–Wiener theorem (7), this function is non-zero
outside the support of V(x), and is in fact nonzero for all x. The curve features
logarithmic divergences at x/x0 = ±1,±2. (D) Hilbert transform of '(x).
Referring to Eq. 12, if the imaginary part of �q(x) is taken to be proportional
to the waveform of part (A), then part (D) is proportional to its real part, part
(B) is proportional to the imaginary part of �' (assuming a right-mover), and
part (C) is proportional to its real part.

A B

Fig. 2. (A) Train of two short voltage pulses separated by normalized
distance w. Unlike in Fig. 1, each pulse individually has three intervals of
equal length x0 at which the charge density expectation value is +cV0 or
−cV0. Therefore, the short pulses do not integrate to zero separately and
they must be considered together. The total mean photon number scales like
logw. (B) '(x), or equivalently current profile, which is seen to be nonzero
between the two pulses.

pulses must be treated as one in analyzing their photonic content.
This is also clear from Fig. 2B, where we see that '(x) is nonzero
in the whole interval between the two pulses.

For the signal of Fig. 2, we will only discuss the result for the
mean photon number. The integration Eq. 35 can be done for
arbitrary separation between the two pulses wx0. The exact result
is lengthy, but asymptotically gives

�2
∝ lnw. [39]

Detection of Photons in Transmission-Line
Pulse
Photon detection for pulsed signals has quite recently received
renewed attention in the work of Mølmer et al. (26, 27). For the
transmission-line setting discussed here, we do not have complete,
realistic experiments to propose that would measure photons in
the pulses that we have given above. But we can, at the level of
gedanken experiments, indicate strategies that could be usefully
pursued in the development of some experimental approaches.

We can say that we must “measure b” (Eq. 12) in a photon
counting experiment, or “measure b†b” in a quantum non-
demolition experiment. We need to be more specific than
this, but one point to note is that there will be a difficulty
because neither b nor b†b commutes with the transmission-line
Hamiltonian Eq. 5—our photons, and indeed photons generally,
do not have the attribute of having a definite frequency (24).
Thus, one might imagine that a helpful step in the measurement
process would be to turn off the transmission line Hamiltonian.
This is at least partially accomplished if the techniques of slow
light and stopped light are applied to our microwave pulse. We
refer to techniques that were developed some time ago for optical
radiation (28) and are recently considered in the far-infrared
regime (29).

A version of this for superconducting transmission lines
in the microwave band could be using tunable, metamaterial
transmission lines (30). With reference to Fig. 3, a normal
transmission line can transition into one with a gradually larger
`(x), by means of the flux biasing of the metamaterial, which here
is simply a one-dimensional array of SQUIDs, whose effective
inductance is varied by an external flux. 1/` can even be made
to vanish (30). We suggest that with a suitable tapering to slow
a pulse adiabatically, combined with a switching, at the right
moment, to the condition 1/` = 0, one can bring our pulse to a
halt without essentially changing its quantum state.
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Fig. 3. Part of gedanken apparatus for transfer or detection of pulse photons. One aspect of an optimized apparatus can be to bring the pulse, without other
disturbance, to a much slower velocity. It is suggested that this may be done by connecting the normal transmission line to a metamaterial (SQUID-based)
transmission line, in which the velocity v is smoothly ramped toward zero by the gradual tapering of the inductance per unit length `, such that 1/`→ 0.

The adiabatic slowing, and sudden freezing, which we have
just described should not change the shape of the pulse, although
it will be compressed spatially. This could be a plus, since, for
example, a 3 ns pulse will, on a conventional transmission line,
extend over a large fraction of a meter. Compression by, say, a
factor of 1,000 would make the region to be measured a more
convenient millimeter-scale size.

But can the measurement take place just where the voltage
pulse is nonzero? Yes, but only a clearly sub-optimal mea-
surement. We now consider some of the general properties of
the optimal measuring instrument, used to measure the frozen
pulse. We use the phrase “measuring instrument” in the way
meant in the tripartite measurement theory of von Neumann,
see section VI.1 of ref. 31, where it is called “part II” of the
setup. (Part I is the system to be measured, and part III is
the “observer.” Von Neumann has an interesting discussion
of the non-uniqueness of the boundaries between these three
subsystems.)

Since apparatus II is only intended to record an integer (a
photon count), it suffices to single out one bosonic degree of
freedom internal to the apparatus, whose operators we will call
c and c†. With this, we can first focus on a common form of
system-apparatus coupling:

Hint ∝ i(b− b†)(c + c†). [40]

It is clear that this interaction could be implemented by
an instrument that physically couples only to the section of
transmission line containing the pulse (Fig. 4A), since we note
from Eqs. 10 and 11 that i(b − b†) is proportional to the field
operator

q(x)Φ̂(x)− '(x)Q̂(x) = cV (x)Φ̂(x) +
Q̂(x)
v

∫ x

−∞

dsV (s), [41]

which is zero in the vacuum region of the transmission line.
Note that the quadrature chosen for the system part of Hint in
Eq. 40 matters for this conclusion.

But note furthermore that there is no reasonable RWA
(rotating wave approximation) that justifies the replacement of
Eq. 40 by the desired photon-counting interaction,

H ′int ∝ i(bc†
− b†c), [42]

which would describe the desired transfer of quanta from system
to instrument for detection. If an apparatus II for the optimal
counting interaction Eq. 42 can be built, it must have the feature,
as shown in Fig. 4B, that it interacts with the transmission line also
in the vacuum region. Actually, according to the Paley–Wiener
theorem, this interaction would have to extend to infinity. While
we have not investigated the question quantitatively, but we
expect that a very good approximation to the optimal counting
measurement would be achieved by a finite interaction region, so
long as it extends well into the vacuum.

A

B

Fig. 4. General features of the measuring instrument, containing an internal mode denoted “c”. In the stopped-pulse scenario, the instrument must interact
with the transmission line over an extended distance. (A) To implement interaction i(b − b†)(c + c†), it is sufficient for the interaction to extend just over the
support of the voltage pulse. But this is only an RWA (rotating wave approximation) to the optimal photon-counting coupling i(bc†

− b†c). But the RWA is
not a good approximation when pulses do not have a well-defined frequency. (B) The implementation of the actual optimal interaction i(bc†

− b†c) requires
interaction with the transmission like extending far into the “vacuum” region, where the voltage expectation value is zero.

6 of 9 https://doi.org/10.1073/pnas.2314846121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
D

K
FZ

-H
G

F,
 D

E
U

T
SC

H
E

S 
K

R
E

B
SF

O
R

SC
H

U
N

G
SZ

E
N

T
R

U
M

 B
IB

L
IO

T
H

E
K

 W
50

0"
 o

n 
A

pr
il 

8,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

13
4.

94
.1

22
.1

18
.



How can it possibly be useful to “measure the vacuum” when
one is trying to count photons in a pulse? We would claim that
this is due to the famous observation of Summers and Werner
that the bosonic quantum vacuum is entangled (32),† applying
more generally to the vacua of other quantum field theories, as
in the work of Reeh and Schlieder (34, 35). Consequently, we
view the optimized measurement discussed here as an instance
of entanglement-assisted measurement (36, 37), first seen in
the concept of superdense coding in quantum communication
theory (38). Note that the inclusion of vacuum in the optimal
measurement clearly also extends to the QND version of the
optimal measurement, which could be implementable by the
interaction Hamiltonian

HQND
int ∝ b†bc†c. [43]

An Application: Quantum Key Distribution
The transmission and measurement of photons of course
has various potential applications in quantum communication
technology. Here, we briefly explore the principles of using
short-pulse, coherent-state AWG photons for quantum key
distribution (QKD). What we will describe here definitely does
not form the basis of a practical QKD system, certainly not in
comparison with the many highly advanced implementations
that are now available (9). But it is worthwhile to understand
that a radically different alternative physical basis for QKD
does exist and can be discussed in light of current experimental
implementations of cryogenic quantum microwave transmission
systems (39, 40).

The advantage of the gedanken apparatus that we explore here
(Fig. 5) is that it highlights the possibility of doing QKD with
the shortest possible, few-cycle pulses. This would be analogous,
with practical visible-optics QKD, of using attosecond pulses to
distribute key. Here, the properties of present-day microwave
AWGs transpose this timescale to the picosecond domain. While
not a near-term possibility, we define our apparatus in a way
that uses many of the capabilities of a recently accomplished
experiment, in which a loophole-free Bell test was achieved
by transmitting microwave-band photons over a 30 m-long
waveguide cooled to millikelvin temperatures (40).

We suggest a set of modifications to this apparatus that would
permit the implementation of QKD. We choose perhaps the
best established QKD scheme, namely the four-state protocol
of BB84 (9, 41). Furthermore, we choose the “dim state”
protocol, in which photons are carried in coherent states with
a small photon number expectation value, with the protocol
being post-selected for the detection of exactly one photon in
a given pulse transmission. A suggested pulse intensity for an
optimized protocol (42) is 〈n〉 = 〈b†b〉 = 0.12 photons. The
protocol is made secure by the “decoy” technique, in which
some pulses are randomly of higher intensity, used only to
detect the occurrence of splitting attacks by an eavesdropper.
It is recommended that these be done 10% of the time, with an
intensity 〈n〉 = 〈b†b〉 = 0.80.

We further suggest a dual-rail encoding of the photonic qubit;
we avoid one of the other popular approaches, time-bin encoding,
to avoid questions of the spatial mode structure of the four BB84
states in this case. Choosing dual rail has several consequences for
the makeup of the physical apparatus: The transmission region
(“WG,” i.e., waveguide region, in Fig. 5) should contain two
cables rather than one. This should not be a large increase in
†See work of Reznik et al. (33) for more recent studies of this phenomenon for the 1D
bosonic vacuum as considered in the present paper.

Fig. 5. Concept for short-pulse QKD, based on the recently achieved exper-
imental setup (39, 40) for transmitting cryogenic microwave photons over a
30-m waveguide region (WG). This setup has recently achieved a loophole-
free test of the violation of Bell inequalities (40). The components needed for
QKD are shown in green boxes, replacing the instrumentation needed for the
Bell experiment; these are superimposed on figure S5 of ref. 40, reproduced
with permission. The Alice (A) side is considerably simplified, consisting of two
pulse generators (AWGs) feeding direction into the transmission channels b
and d, after suitable attenuation (−20 dB) at several temperature stages,
including at 10 mK (region labeled BT, “base temperature”). The role of the
attenuators is explained in Quantum-State Description of a Pulse Emitted by
an AWG. The components on the Bob (B) side are more conceptual and are
explained in the text.

the complexity of the transmission pipe. We thus introduce two
transmission modes, labeled b and d in the figure. The Alice
side of the setup is simple: two different AWG sources feeding
directly, with attenuation, into b and d .

The protocol should be based on a particular pulse choice,
for example, the voltage waveform shown in Fig. 5. Two of the
orthogonal states of BB84 are created by simply launching this
pulse, with suitable amplitude V0 (Eq. 37), into either mode b or
d . The conjugate basis states are created by simultaneous pulsing
of the b and d AWGs, with amplitudes V0/

√
2 and ±V0/

√
2.

Although these coherent states have no b-d entanglement, they
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give the desired superposition states when post-selected for the
one-photon sector.

The Bob end of this system is considerably more speculative.
Bob must choose an orthogonal basis in which to measure. When
he chooses to measure in the first (b–d ) basis, it suffices for him
to simply make a photon number measurement on each of the
two transmission lines, with the apparatus as hypothesized in
Detection of Photons in Transmission-Line Pulse.

To measure in the conjugate basis, he must switch on a 50–
50 beamsplitter involving modes b and d . Unlike any ordinary
beamsplitter, the splitting needed here must act equally for all
frequencies, or equivalently, must beamsplit instantaneously at
all moments in time. Such a component has been understood
to be conceptually possible since the early days of electrical
transmission theory, when it was given the name hybrid coil
[p. 103, (43)]. In principle, this is achieved with the use of an
assembly of electrical transformers. One can very speculatively
propose that this hybrid coil could be switched on and off by
the use of tunable inductances made using SQUID arrays as in
Fig. 3.

It would be premature to completely assess the practical issues
raised by the possibility of this QKD apparatus. We will, however,
explore one fundamental issue, which is that in this QKD
application, the number of thermal photons detected in one
Alice–Bob transmission should be much less than 1. We recall
the standard Nyquist–Johnson result for the number of photons
passing per unit time in a 1D transmission line of frequency !
in frequency band d! (44):

P
ℏ!

=
1

2�
d!

eℏ!/kBT − 1
. [44]

We note that, reminiscent of some of the examples above,
the integrated number of thermal photons has a (logarithmic)
infrared divergence. But, if we choose a pulse shape so that the
mode function b, and its accompanying displacement parameter
�, are finite, then the detector optimized to b will record a finite
number of thermal photons. An exact calculation of this number
distribution is possible, but we will content ourselves with a rough
estimate in the spirit of Eq. 38:

〈nth〉 ∼
P
ℏ!
· ttr ∼

(
eℏ/ttrkBT − 1

)−1
. [45]

Here, we have used Eq. 44, setting !, d! ∼ 1/ttr . We see that
getting 〈nth〉 � 1 requires ttr < ℏ/kBT ; for a transmission
temperature of T = 10 mK, this requires ttr to be in the range of
100’s of ps or less. Currently, this would require a state-of-the-art
high-speed AWG.

Outlook
A primary goal of this paper has been to make precise the notion
that even a very short electromagnetic pulse can carry photons
with well-defined attributes. These attributes do not have to

include having a definite frequency (24). We show that the
optimal photonic description, and the one leading to the optimal,
least invasive measurement, requires knowledge of a particular
spatial (equivalently temporal) profile, which is nontrivially
related to the classical profile of the pulse. This quantum profile
can be localized, but not as strictly as its classical counterpart. For
the infinite, perfect transmission line, the relation of the classical
to the quantum pulse involves a Hilbert transform. But for more
general settings, not treated here (e.g., a disordered transmission
line), the mathematical relation of the quantum and classical
pulses is not simply given by the Hilbert transform.

Unfortunately, our story is presently incomplete, in the sense
that while our optimal [part-II in von Neumann’s language
(31)] detectors above are unquestionably possible as a matter of
principle, we do not know presently how they would actually be
constructed with the tools of circuit-QED (12). It will certainly
be a good challenge for this remarkably powerful toolkit to be
used for the optimal design of these detectors in a later work.

The results obtained here give an interesting perspective on
future attempts to take in a different direction the very well-
developed subject of quantum cyrptography with dim coherent
states. In the last section, we proposed an admittedly fanciful
implementation of such a system, which however can be foreseen
on the basis of Bell inequality tests with cryogenic microwave
equipment. We have noted that our proposal of picosecond-
scale transmissions for QKD based on microwave transmissions
would, if transposed to the optical domain, imply QKD with
attosecond pulses. The theory developed here would give a
basis for confidently using attosecond light (45) in secure key
distribution, but the theory gives warning that in a setting where
photons have no definite frequency, pulses that appear very dim
(〈n〉 � 1) from the point of view of traditional detectors are
(Fig. 2) actually very bright, with an arbitrarily large �2. Eve,
in possession of a QND detector of the sort described above,
would easily break a key distribution system which Alice and
Bob, with frequency-sensitive detectors, feel mistakenly to be
secure.

We close by turning back to the experimental proposal of
Fig. 5. Here, it would be possible to develop more conventional
demonstrator experiments based on microsecond, narrow-band
pulsed coherent states, for which all components (including hy-
brid splitters and photon detectors) are presently well developed.
Perhaps such experiments would help blaze the trail for quantum
communication in the ultrashort regime.

Data, Materials, and Software Availability. There are no data underlying
this work.
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