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Topological stripe state in an extended Fermi-Hubbard model
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Interaction-induced topological systems have attracted a growing interest for their exotic properties going
beyond the single-particle picture of topological insulators. In particular, the interplay between strong correla-
tions and finite doping can give rise to nonhomogeneous solutions that break the translational symmetry. In this
paper, we report the appearance of a topological stripe state in an interaction-induced Chern insulator around
half filling. In contrast to similar stripe phases in nontopological systems, here we observe the appearance of
chiral edge states on top of the domain wall. Furthermore, we characterize their topological nature by analyzing
the quantized transferred charge of the domains in a pumping scheme. Finally, we focus on aspects relevant to
observing such phases in state-of-the-art quantum simulators of ultracold atoms in optical lattices. In particular,
we propose an adiabatic state preparation protocol and a detection scheme of the topology of the system in real
space.
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I. INTRODUCTION

In the last decade, the quest for materials exhibiting in-
trinsic topological phases in the absence of external fields has
been the focus of very intense research [1–3]. The interaction-
induced quantum anomalous Hall (QAH) phase [2,4–8], or
chiral spin liquids [3,9,10], are two paradigmatic exam-
ples. In both cases, the interplay between the interactions
and the geometry leads to the spontaneous breaking of
time-reversal symmetry, and the resulting phases possess
nontrivial topological invariants. The theoretical search for
such interaction-induced topological phases in many-body
systems has been further boosted by the development of ten-
sor network approaches [11,12]. In particular, state-of-the-art
density matrix renormalization group (DMRG) studies [13]
in cylinder geometries have unambiguously established the
presence of spontaneous Chern insulators [14–16] in the
ground-state phase diagram of several two-dimensional lattice
models. These include effective models of twisted bilayer
graphene [17–22], or extended Fermi-Hubbard models of
spinless fermions [23–27] that can be engineered in cold atom
quantum simulators. Furthermore, fractional Chern insula-
tors have been also identified in the spinful Fermi-Hubbard
model [28] and in the Heisenberg model [29], both repre-
senting cases in which the system realizes a chiral spin-liquid
phase.

While all these studies focused on spatially homogeneous
phases at commensurate particle fillings, it is worth noticing
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that the study of inhomogeneous phases at incommensurate
fillings, i.e., at finite doping, is of particular interest. Several
works in this direction have pushed tensor network simu-
lations to their limit in order to identify antiferromagnetic
stripe domain walls of high-Tc superconductors in the under-
doped region of the Hubbard model [30,31], as first predicted
by mean-field studies [32,33]. In the case of interaction-
induced Chern insulating phases, very recent mean-field
studies [34–37] suggested that at incommensurate dopings
these systems can also exhibit domain walls between phases
characterized by different topological invariants, leading to
interaction-induced chiral edge states [34]. Remarkably, this
picture is consistent with the subsequent experimental ob-
servation of a mosaic of patches with opposite topological
invariants in twisted bilayer graphene [38].

In this paper, we analyze the phenomenon of spatially inho-
mogeneous topological phases in two dimensions (2D). Based
on a DMRG study in the matrix-product-state (MPS) repre-
sentation, we confirm the numerical stability of these phases
beyond the mean-field approximation in a cylinder geometry
with a very long length and short transverse direction. We
also introduce techniques to measure topological invariants in
inhomogeneous systems and in a purely many-body scenario,
i.e., beyond the single-particle approximation.

To this aim, we consider the effect of doping in the
interaction-induced homogeneous QAH phase of a fermionic
lattice model. We start by showing that such a system indeed
exhibits a topological stripe state, hosting chiral edge states at
the domain walls. We then characterize the topological nature
of the domains by means of a topological pumping scheme.
Following Laughlin’s gedanken experiment [39], which we
apply to an inhomogeneous system, we extract the Chern
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number of the domains from their quantized charge transfer
under an adiabatic flux insertion in the DMRG simulations.

Our study not only reveals the fundamental features of
these inhomogeneous solutions, and how they can be char-
acterized in a strongly correlated scenario, but it is also
further motivated by the prospect of quantum simulating these
phases with cold atoms in optical lattices. In this regard,
notice that in solid-state materials the QAH has only been
observed in a few systems with spin-orbit coupling [4–6] or
with interacting magnetic orbitals [7,8]. On the other hand,
noninteracting Chern insulators have also been observed in
quantum simulators [40–43] via the engineering of artificial
gauge fields [44–47]. Extending these experiments to the in-
teracting case would allow one to observe new phenomena.
Motivated by these reasons, we propose schemes to pre-
pare these phases in an experiment and develop strategies to
characterize their topology in real space. In this context, we
explore the possibility of preparing the topological phase of
the model in a quasiadiabatic protocol by showing preliminary
numerical evidence of a second-order transition into the topo-
logical phase induced by a staggered on-site lattice potential,
tunable in experiments. We finally discuss the possibility of
measuring the topological nature of the phase through snap-
shot measurements of the particle density.

II. MODEL

We consider the extended Fermi-Hubbard Hamiltonian of
spinless fermions on a checkerboard lattice described by the
Hamiltonian Ĥ = Ĥ0 + Ĥint. The quadratic part Ĥ0 of the
Hamiltonian reads

Ĥ0 = −t
∑

〈i j〉
(ĉ†

i ĉ j + H.c.) + J
∑

〈〈i j〉〉
eiφi j (ĉ†

i ĉ j + H.c.), (1)

where t and J are the nearest-neighbor (NN) and next-to-
nearest-neighbor (NNN) hopping amplitudes, respectively.
Here, we fix the phase of the NNN hoppings to φi j = ±π [see
Fig. 1(a)]. For this choice, Ĥ0 has time-reversal symmetry, and
at half filling it exhibits two bands with a robust quadratic
band touching (semimetallic phase) [16]. On the other hand,
the interacting part Ĥint of the Hamiltonian has a repulsive
density-density interaction up to third neighbors and reads

Ĥint = V1

∑

〈i j〉
n̂′

in̂
′
j + V2

∑

〈〈i j〉〉
n̂′

in̂
′
j + V3

∑

〈〈〈i j〉〉〉
n̂′

in̂
′
j, (2)

with n̂′
i ≡ n̂i − 1/2 and n̂i = ĉ†

i ĉi. For finite interactions
V1/2 � V2 � V3, the frustration induced by the competi-
tion between semiclassical charge orders allows for a robust
interaction-induced QAH state in the phase diagram of
Ĥ [24,34,48]. The latter is characterized by the appearance
of spatially homogeneous local current loop order, ξQAH ≡∑

i j∈plaq. Im〈ĉ†
i ĉ j〉, in NN plaquettes (see Supplemental Ma-

terial [49] for details), which breaks time-reversal symmetry
spontaneously. In addition, it is also characterized by a
nonzero global topological invariant, the many-body Chern
number ν. Importantly, there is an exact twofold ground-state
degeneracy, corresponding to the two opposite values of ξQAH.
These two sectors are therefore characterized by opposite
Chern numbers ν± = ±1.

FIG. 1. (a) Hopping processes of the Hamiltonian on the
checkerboard lattice. (b) Sketch of the topological stripe state in
the cylinder geometry. (c)–(e) Expectation value of local quantities
integrated over the radial direction of the cylinder. (c) Current loop
order featuring a sign inversion at the center of the cylinder. (d) De-
viation of the local density from half filling. One can clearly observe
the presence of the central hole. (e) Radial currents signaling the
presence of chiral edge states in the central regions, where the Chern
number changes.

III. TOPOLOGICAL STRIPE STATE

We now discuss the appearance of spatially inhomoge-
neous Chern insulators in the model around half filling, which
constitutes one of the central results of this work. We consider
a cylinder geometry with Ly = 6 two-site unit cells in the
radial direction (y) and Lx = 64 in the longitudinal one (x). To
determine its ground state, we use the DMRG algorithm on
the one-dimensional folding of the cylinder. In the numerical
treatment, this 1D system, therefore, has effective long-range
Hamiltonian terms, and one needs to use large bond dimen-
sions χmax = 3000 to get truncation errors of the order 10−5 at
most. At half filling, for V1/t = 4.5, V2/t = 2.25, V3/t = 0.5,
and J/t = 0.5, the system presents a degenerate QAH ground
state with Chern numbers ν± = ±1. The addition of a single
hole favors the breaking of the translational symmetry in
the bulk due to the spontaneous localization of the hole, as
shown in Fig. 1 [50]. Figure 1(b) depicts the DMRG solution,
which we call the topological stripe state. Such a state is
spatially composed of two different Chern insulators, located
on distinct halves of the cylinder and separated by a stripe
domain wall. That is, due to the spontaneous breaking of
translational invariance induced by doping, the two degenerate
half-filling ground states coexist in two separate regions of the
same bulk. Figure 1(d) shows the density profile integrated
along the radial direction. We observe that the domain wall is
induced by the presence of a holelike stripe, which is located
in the bulk of the cylinder and has an integrated quantized
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charge of Q = −1 [51]. The latter separates two different
Chern insulators, as signaled by the inversion of ξQAH, shown
in Fig. 1(c). Notice that this is reminiscent of the change in
the phase of the antiferromagnetic order parameter observed
in the stripe phase of the Fermi-Hubbard model describing
cuprate high-Tc superconductors [30,31]. Here, however, the
local order parameter ξQAH is intertwined with the topological
Chern number ν. This enriches the features of this topological
stripe state, compared to the nontopological magnetic stripes.
For instance, by virtue of the bulk-edge correspondence of
topological insulators, one expects the presence of chiral edge
states at the interface between the two different Chern in-
sulators. Furthermore, these edge states should have chiral
current in the radial direction, defined as ξ

i j
y ≡ 2Jeiφi j 〈ĉ†

i ĉ j〉,
where (i, j) are NNN bonds in the y direction. This quantity
integrated in the radial direction is shown in Fig. 1(e). We
observe positive net currents around the hole region, where the
topological invariant changes its value, as discussed below. An
important comment is in order at this point. It is evident that
in the purely 2D limit (Ly � 1) adding a single hole to half
filling cannot induce a domain wall, in contrast to the case
of Ly = 6 under consideration. While, therefore, it would be
interesting to certify the presence of topological stripe states
when varying the cylinder width Ly, the case Ly = 8 is already
beyond the scope of this work due to the exponential increase
of the required bond dimension with cylinder width. However,
we expect that for finite ratios between the hole doping and
cylinder width, δ/Ly, similar topological stripe state solutions
can be found, as our results indicate that the state in which
the holes separate different Chern insulators is energetically
favorable compared to spatially homogeneous solutions. For
narrower cylinders with Ly = 4, we have numerically checked
that time-reversal symmetry is not spontaneously broken in
the presence of a hole, as already known for the half-filling
spatially homogeneous case [24].

IV. TOPOLOGICAL PUMP IN INHOMOGENEOUS
CHERN INSULATORS

While the local quantities shown in Figs. 1(b)–1(e) are
consistent with a topological stripe state, where each of the
sides of the cylinder has a different Chern number, one needs
to explicitly compute these global invariants to rigorously
characterize the topological nature of this state. Notice that,
for such an interacting and inhomogeneous state, this task is
particularly challenging, as the main tools to study topology
in real space, e.g., the local Chern marker [52,53], are limited
to the free fermionic picture, where interactions can only
be treated in a mean-field approximation [34,54]. Here, to
compute a spatially inhomogeneous Chern number in a purely
many-body scenario, we follow the adiabatic flux insertion
procedure, introduced as a gedanken experiment by Laugh-
lin [39]. This relies on the quantized Hall response of Chern
insulators after one cycle of a charge pump, equal to the Chern
number. While this method has been widely used in adiabatic
DMRG simulations of homogeneous systems to compute their
integer [23,24] and fractional [28,29] Chern numbers, here we
show that it is also suited to analyze the topology of inho-
mogeneous stripe states. We insert a U (1) flux to the stripe
ground state obtained in the previous section by adiabatically

FIG. 2. Quantized charge transport in the topological pump pro-
cedure performed with an adiabatic DMRG simulation. The net
charges of the left, central, and right regions are shown in yellow,
green, and blue colors, respectively, and as a function of the inserted
flux θ , as indicated in the inset sketch.

changing the phase of the tunneling terms crossing the y peri-
odic boundary ĉ†

i ĉ j → ĉ†
i ĉ jeiθ in the DMRG simulation. For a

full cycle θ : 0 → 2π , and according to Laughlin’s argument,
a homogeneous Chern insulator in a cylinder geometry pumps
a quantized charge 	Q equal to the value of |ν| from left
to right, or vice versa, depending on the sign of ν. For an
inhomogeneous system with two different nontrivial Chern
numbers, we instead expect a quantized transport from the
edges to the center, or vice versa, as discussed below. The
effect of the flux insertion in the topological stripe state can
be seen in Fig. 2, which shows the evolution of the inte-
grated charge deviation from half filling, defined as QS,θ ≡∑

i∈S n̂′
i(θ ), where S ∈ {l, c, r} corresponds to the left, center,

or right region of the cylinder, respectively. We also define the
transferred charge on each region during the pump as 	QS ≡
QS,2π − QS,0. At the beginning of the pump, Ql,0 = Qr,0 = 0,
and Qc,0 = −1, as the added hole is located in the central
region. As θ increases, the combination of the Hall responses
on each half of the cylinder leads to a net accumulation of
charge in the domain wall, which indicates that the two halves
of the cylinder have different Chern numbers. That is, for a
unique ν the charge would instead flow from one edge to the
other without a net accumulation in the bulk. Indeed, notice
that the charge pumped to the center domain wall is related to
the Chern numbers of the left and right halves of the cylinder
through

	Qc ≡ −(	Ql + 	Qr ) = νl − νr . (3)

At the end of the cycle (θ = 2π ), we observe that both the left
and right halves have transported a unit charge to the center,
and the initial central hole is converted into a particle, i.e.,
	Qc = 2. This is in agreement with these two regions having
different Chern numbers νl = 1 and νr = −1. Therefore, with
the help of Eq. (3) and the DMRG adiabatic flux insertion, we
are able to unambiguously establish the topological character
of this spatially inhomogeneous phase. For completeness, we
also provide a qualitative single-particle explanation of this
generalized Laughlin pump for inhomogeneous systems in the
Supplemental Material [49] (see also Ref. [55] therein).
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FIG. 3. Adiabatic state preparation of the interaction-induced
QAH phase via the lattice control parameter M. The continuous
behavior of the local order parameter ξQAH indicates a continuous
phase transition from the trivial stripe insulator at M/t � 1 to the
QAH state at M → 0.

V. ADIABATIC STATE PREPARATION OF THE
INTERACTION-INDUCED QAH PHASE

Compared to other QAH states emerging from spontaneous
symmetry breaking in solid-state systems, the one considered
here is described by a relatively simple Hamiltonian Ĥ that
can be quantum-simulated in a controlled environment. In
particular, Rydberg-dressed atoms in optical lattices can be
used to simulate the extended Fermi-Hubbard model with tun-
able long-range interactions [56]. For a detailed experimental
implementation of Ĥ in Eqs. (1) and (2), see Ref. [48]. Here,
we focus on the yet unaddressed question of the quantum state
preparation of this exotic phase, which is ultimately related to
the appearance of the domain wall states discussed above. For
the adiabatic state preparation of the QAH phase [57,58] it is
desirable to find a second-order phase transition from a trivial
insulator that could be easily initialized [59,60]. This strategy
has already been used to prepare noninteracting Chern insula-
tors in optical lattices [61], and in the presence of interactions,
there are numerical proposals to prepare fractional Chern in-
sulators [62,63]. The main difference in the present case is that
the QAH phase arises from the spontaneous breaking of time-
reversal symmetry in the ground state, that is, in the absence
of external gauge fields. Therefore, we expect the appearance
of Kibble-Zurek defects in a continuous transition [64–67],
qualitatively resembling the static stripe state discussed above,
and their interplay with topological chiral edge states.

For the Hamiltonian Ĥ under consideration, however, all
the interaction-induced charge orders in the phase diagram
feature a first-order phase transition to the QAH state [24]. To
overcome this problem, we propose to add to Ĥ a staggering
potential [63,68] with strength M of the form

Ĥprep = M

2

∑

i

(−1)si n̂i, (4)

where si = ±1 on alternating two-site longitudinal stripes (see
Fig. 3), which in the absence of interactions induces a local
charge order at half filling corresponding to alternating empty
and occupied stripes. In order to analyze the nature of the
phase transition when varying M, we use the infinite density
matrix renormalization group (iDMRG) in the cylinder geom-
etry with a single ring unit cell. Compared to the previous
finite DMRG simulation, here we need to enlarge the bond
dimension to χmax = 4000 to stabilize solutions with a small

but finite value of ξQAH. As shown in Fig. 3, when M dom-
inates, the system is in a trivial charge insulating state with
a vanishing ξQAH. Upon decreasing M, the order parameter
ξQAH becomes finite without exhibiting a clear discontinuous
jump, which suggests a continuous phase transition to the
QAH phase. Nevertheless, it is worth mentioning that in order
to fully characterize the continuous nature of this 2D phase
transition it would be desirable to perform a finite-size scaling
analysis of the order parameter when varying the cylinder
width, which represents a challenging numerical task beyond
the scope of this work.

VI. SNAPSHOT-BASED DETECTION OF THE CHERN
NUMBER IN TRANSPORT EXPERIMENTS

WITH COLD ATOMS

One of the advantages of the numerical determination of
Chern numbers via the topological pump procedure described
above is that it can be connected to the experimental mea-
surement of this global topological invariant in real space.
For instance, the 2D Laughlin topological pump itself has
been experimentally realized for noninteracting particles with
cold atom quantum simulators in a synthetic cylinder geom-
etry [69]. Moreover, in a 2D lattice with open boundaries,
the presence of an external force playing the role of an elec-
tric field is expected to result in the same quantized Hall
response [70,71]. In both cases, the Chern number can be
related to the charge drift, which can be extracted from snap-
shots of the local density, accessible with a quantum gas
microscope [72,73]. Here, to numerically simulate snapshot
measurements at the initial and final stages of the topolog-
ical pump, we use a perfect sampling algorithm [74]. In a
nutshell, this method allows one to efficiently draw indepen-
dent snapshots of the local density of an MPS, by simulating
collapse measurements in the occupation basis. The results
are presented in Fig. 4, which shows the averaged values
〈n̄′〉 for 3500 snapshots. In Fig. 4(a), corresponding to θ = 0,
the central hole is signaled by the depletion of the local
density in this region. In this case, the deviation charges
on the left and right regions are estimated, respectively, as
Ql,0 = (0.01 ± 0.26) and Qr,0 = (−0.01 ± 0.26). At the fi-
nal stage of the pump [Fig. 4(b)], one observes an excess
charge in the central region, and the left and right regions
have nonvanishing net charges of Ql,2π = (−0.95 ± 0.26) and
Qr,2π = (−0.97 ± 0.26), respectively. From these quantities,
we estimate the Chern number of the left and right regions
as νl = (0.96 ± 0.37) and νr = −(0.96 ± 0.37), which are
compatible with the ones extracted from Fig. 2.

VII. CONCLUSIONS AND OUTLOOK

We provided numerical evidence of a topological stripe
state in an extended Fermi-Hubbard model at finite hole
doping in a cylinder geometry. We extended the usual ap-
plication of the numerical Laughlin pump to characterize
the two spatially separated Chern numbers of such a state.
We furthermore discussed a related detection scheme on a
quantum simulator based on snapshot measurements of the
local density. This work opens the road to studying other
two-dimensional interacting systems with inhomogeneous
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FIG. 4. Computation of quantized Hall responses via local den-
sity snapshots in the topological pump. (a), (b) Estimated density
profiles from 3500 snapshots at the beginning and at the end of the
flux insertion cycle, respectively. The left and right Chern numbers
are extracted from the difference between these two cases.

topological properties in real space with tensor networks.
In particular, similar topological stripe phases can be ex-
pected at finite doping for models hosting a spontaneous
quantum anomalous Hall phase [17,23–27] or a chiral spin liq-
uid [28,29]. Future research directions also include studying
the creation of topological stripes across an interaction-
induced topological phase transition. In this context, the use of
quantum simulators could represent a big advantage, as com-
puting real-time dynamics of such 2D interacting fermionic
systems is in general a computationally hard task.
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