001     1024589
005     20250204113824.0
024 7 _ |a 10.1039/D3CP04111E
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02263
|2 datacite_doi
024 7 _ |a 38179667
|2 pmid
024 7 _ |a WOS:001136882100001
|2 WOS
037 _ _ |a FZJ-2024-02263
082 _ _ |a 540
100 1 _ |a Mitra, Souvik
|0 0009-0005-9476-980X
|b 0
245 _ _ |a Electron transfer reaction of TEMPO-based organic radical batteries in different solvent environments: comparing quantum and classical approaches
260 _ _ |a Cambridge
|c 2024
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712752670_24400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, we delve into the complex electron transfer reactions associated with the redox-active (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), a common component in organic radical batteries (ORBs). Our approach estimates quantum electron-transfer (ET) energies using Density Functional Theory (DFT) calculations by sampling from structures simulated classically. This work presents a comparative study of reorganization energies in ET reactions across different solvents. Furthermore, we investigate how changes in the electrolyte environment can modify the reorganization energy and, consequently, impact ET dynamics. We also explore the relationship between classical and quantum vertical energies using linear regression models. Importantly, this comparison between quantum and classical vertical energies underscores the role of quantum effects, like charge delocalization, in offering added stabilization post-redox reactions. These effects are not adequately represented by the classical vertical energy distribution. Our study shows that, although we find a significant correlation between the vertical energies computed by DFT and the classical force field, the regression parameters depend on the solvent, highlighting that classical methods should be benchmarked by DFT before applying them to novel electrolyte materials.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a DFG project 422726248 - SPP 2248: Polymer-basierte Batterien (422726248)
|0 G:(GEPRIS)422726248
|c 422726248
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Heuer, Andreas
|0 P:(DE-Juel1)176646
|b 1
700 1 _ |a Diddens, Diddo
|0 P:(DE-Juel1)169877
|b 2
|e Corresponding author
773 _ _ |a 10.1039/D3CP04111E
|g Vol. 26, no. 4, p. 3020 - 3028
|0 PERI:(DE-600)1476244-4
|n 4
|p 3020 - 3028
|t Physical chemistry, chemical physics
|v 26
|y 2024
|x 1463-9076
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024589/files/d3cp04111e.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024589/files/electron-transfer-reaction-of-tempo-based-organic-radical-batteries-in-different-solvent-environments-comparing-quantum-and-classical-approaches.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024589/files/electron-transfer-reaction-of-tempo-based-organic-radical-batteries-in-different-solvent-environments-comparing-quantum-and-classical-approaches.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024589/files/electron-transfer-reaction-of-tempo-based-organic-radical-batteries-in-different-solvent-environments-comparing-quantum-and-classical-approaches.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024589/files/electron-transfer-reaction-of-tempo-based-organic-radical-batteries-in-different-solvent-environments-comparing-quantum-and-classical-approaches.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024589/files/electron-transfer-reaction-of-tempo-based-organic-radical-batteries-in-different-solvent-environments-comparing-quantum-and-classical-approaches.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024589/files/d3cp04111e.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024589/files/d3cp04111e.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024589/files/d3cp04111e.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024589/files/d3cp04111e.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024589
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0009-0005-9476-980X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176646
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169877
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
|0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2022
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21