001024592 001__ 1024592 001024592 005__ 20240712113117.0 001024592 0247_ $$2doi$$a10.1039/D1CP04830A 001024592 0247_ $$2ISSN$$a1463-9076 001024592 0247_ $$2ISSN$$a1463-9084 001024592 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02266 001024592 0247_ $$2pmid$$a35212346 001024592 0247_ $$2WOS$$aWOS:000760909900001 001024592 037__ $$aFZJ-2024-02266 001024592 082__ $$a540 001024592 1001_ $$00000-0003-2693-3653$$aWettstein, Alina$$b0 001024592 245__ $$aControlling Li + transport in ionic liquid electrolytes through salt content and anion asymmetry: a mechanistic understanding gained from molecular dynamics simulations 001024592 260__ $$aCambridge$$bRSC Publ.$$c2022 001024592 3367_ $$2DRIVER$$aarticle 001024592 3367_ $$2DataCite$$aOutput Types/Journal article 001024592 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712837718_16170 001024592 3367_ $$2BibTeX$$aARTICLE 001024592 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001024592 3367_ $$00$$2EndNote$$aJournal Article 001024592 500__ $$aUnterstützt durch den MWIDE Grant: “GrEEn” project (funding code: 313-W044A) 001024592 520__ $$aIn this work, we report the results from molecular dynamics simulations of lithium salt-ionic liquid electrolytes (ILEs) based either on the symmetric bis[(trifluoromethyl)sulfonyl]imide (TFSI−) anion or its asymmetric analogue 2,2,2-(trifluoromethyl)sulfonyl-N-cyanoamide (TFSAM−). Relating lithium's coordination environment to anion mean residence times and diffusion constants confirms the remarkable transport behaviour of the TFSAM−-based ILEs that has been observed in recent experiments: for increased salt doping, the lithium ions must compete for the more attractive cyano over oxygen coordination and a fragmented landscape of solvation geometries emerges, in which lithium appears to be less strongly bound. We present a novel, yet statistically straightforward methodology to quantify the extent to which lithium and its solvation shell are dynamically coupled. By means of a Lithium Coupling Factor (LCF) we demonstrate that the shell anions do not constitute a stable lithium vehicle, which suggests for this electrolyte material the commonly termed “vehicular” lithium transport mechanism could be more aptly pictured as a correlated, flow-like motion of lithium and its neighbourhood. Our analysis elucidates two separate causes why lithium and shell dynamics progressively decouple with higher salt content: on the one hand, an increased sharing of anions between lithium limits the achievable LCF of individual lithium-anion pairs. On the other hand, weaker binding configurations naturally entail a lower dynamic stability of the lithium-anion complex, which is particularly relevant for the TFSAM−-containing ILEs. 001024592 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001024592 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001024592 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b1 001024592 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b2$$eCorresponding author 001024592 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D1CP04830A$$gVol. 24, no. 10, p. 6072 - 6086$$n10$$p6072 - 6086$$tPhysical chemistry, chemical physics$$v24$$x1463-9076$$y2022 001024592 8564_ $$uhttps://juser.fz-juelich.de/record/1024592/files/2110.11278.pdf$$yOpenAccess 001024592 8564_ $$uhttps://juser.fz-juelich.de/record/1024592/files/2110.11278.gif?subformat=icon$$xicon$$yOpenAccess 001024592 8564_ $$uhttps://juser.fz-juelich.de/record/1024592/files/2110.11278.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001024592 8564_ $$uhttps://juser.fz-juelich.de/record/1024592/files/2110.11278.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001024592 8564_ $$uhttps://juser.fz-juelich.de/record/1024592/files/2110.11278.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001024592 909CO $$ooai:juser.fz-juelich.de:1024592$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001024592 9101_ $$0I:(DE-HGF)0$$60000-0003-2693-3653$$aExternal Institute$$b0$$kExtern 001024592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b1$$kFZJ 001024592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b2$$kFZJ 001024592 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001024592 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21 001024592 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21 001024592 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2023-10-21 001024592 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21 001024592 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21 001024592 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21 001024592 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001024592 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21 001024592 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger 001024592 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21 001024592 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21 001024592 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001024592 9801_ $$aFullTexts 001024592 980__ $$ajournal 001024592 980__ $$aVDB 001024592 980__ $$aUNRESTRICTED 001024592 980__ $$aI:(DE-Juel1)IEK-12-20141217 001024592 981__ $$aI:(DE-Juel1)IMD-4-20141217