001024596 001__ 1024596
001024596 005__ 20240712113056.0
001024596 0247_ $$2doi$$a10.1021/acsami.9b16348
001024596 0247_ $$2ISSN$$a1944-8244
001024596 0247_ $$2ISSN$$a1944-8252
001024596 0247_ $$2pmid$$a31825198
001024596 0247_ $$2WOS$$aWOS:000507146100052
001024596 037__ $$aFZJ-2024-02270
001024596 082__ $$a600
001024596 1001_ $$0P:(DE-HGF)0$$aVijayakumar, Vidyanand$$b0
001024596 245__ $$aDioxolanone-Anchored Poly(allyl ether)-Based Cross-Linked Dual-Salt Polymer Electrolytes for High-Voltage Lithium Metal Batteries
001024596 260__ $$aWashington, DC$$bSoc.$$c2020
001024596 3367_ $$2DRIVER$$aarticle
001024596 3367_ $$2DataCite$$aOutput Types/Journal article
001024596 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712840688_17089
001024596 3367_ $$2BibTeX$$aARTICLE
001024596 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024596 3367_ $$00$$2EndNote$$aJournal Article
001024596 520__ $$aNovel cross-linked polymer electrolytes (XPEs) are synthesized by free-radical copolymerization induced by ultraviolet (UV)-light irradiation of a reactive solution, which is composed of a difunctional poly(ethylene glycol) diallyl ether oligomer (PEGDAE), a monofunctional reactive diluent 4-vinyl-1,3-dioxolan-2-one (VEC), and a stock solution containing lithium salt (lithium bis(trifluoromethanesulfonyl)imide, LiTFSI) in a carbonate-free nonvolatile plasticizer, poly(ethylene glycol) dimethyl ether (PEGDME). The resulting polymer matrix can be represented as a linear polyethylene chain functionalized with cyclic carbonate (dioxolanone) moieties and cross-linked by ethylene oxide units. A series of XPEs are prepared by varying the [O]/[Li] ratio (24 to 3) of the stock solution and thoroughly characterized using physicochemical (thermogravimetric analysis–mass spectrometry, differential scanning calorimetry, NMR, etc.) and electrochemical techniques. In addition, quantum chemical calculations are performed to elucidate the correlation between the electrochemical oxidation potential and the lithium ion–ethylene oxide coordination in the stock solution. Later, lithium bis(fluorosulfonyl)imide (LiFSI) salt is incorporated into the electrolyte system to produce a dual-salt XPE that exhibits improved electrochemical performance, a stable interface against lithium metal, and enhanced physical and chemical characteristics to be employed against high-voltage cathodes. The XPE membranes demonstrated excellent resistance against lithium dendrite growth even after reversibly plating and stripping lithium ions for more than 1000 h with a total capacity of 0.5 mAh cm–2. Finally, the XPE films are assembled in a lab-scale lithium metal battery configuration by using carbon-coated LiFePO4 (LFP) or LiNi0.8Co0.15Al0.05O2 (NCA) as a cathode and galvanostatically cycled at 20, 40, and 60 °C. Remarkably, at 20 °C, the NCA-based lithium metal cells displayed excellent cycling stability and good capacity retention (>50%) even after 1000 cycles.
001024596 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024596 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001024596 536__ $$0G:(BMBF)13XP0175A$$aFestBatt-Polymere - Materialplattform 'Polymere' im Rahmen des Kompetenzclusters für Festkörperbatterien (13XP0175A)$$c13XP0175A$$x2
001024596 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024596 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b1
001024596 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b2$$ufzj
001024596 7001_ $$00000-0001-5446-7923$$aKurungot, Sreekumar$$b3
001024596 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
001024596 7001_ $$0P:(DE-Juel1)171863$$aNair, Jijeesh Ravi$$b5$$eCorresponding author
001024596 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.9b16348$$gVol. 12, no. 1, p. 567 - 579$$n1$$p567 - 579$$tACS applied materials & interfaces$$v12$$x1944-8244$$y2020
001024596 8564_ $$uhttps://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.pdf$$yRestricted
001024596 8564_ $$uhttps://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.gif?subformat=icon$$xicon$$yRestricted
001024596 8564_ $$uhttps://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024596 8564_ $$uhttps://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024596 8564_ $$uhttps://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024596 909CO $$ooai:juser.fz-juelich.de:1024596$$pVDB
001024596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001024596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b1$$kFZJ
001024596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b2$$kFZJ
001024596 9101_ $$0I:(DE-HGF)0$$60000-0001-5446-7923$$aExternal Institute$$b3$$kExtern
001024596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001024596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171863$$aForschungszentrum Jülich$$b5$$kFZJ
001024596 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024596 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001024596 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001024596 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001024596 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001024596 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001024596 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001024596 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001024596 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001024596 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001024596 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2023-10-25
001024596 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2023-10-25
001024596 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024596 980__ $$ajournal
001024596 980__ $$aVDB
001024596 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024596 980__ $$aUNRESTRICTED
001024596 981__ $$aI:(DE-Juel1)IMD-4-20141217