| Home > Publications database > Dioxolanone-Anchored Poly(allyl ether)-Based Cross-Linked Dual-Salt Polymer Electrolytes for High-Voltage Lithium Metal Batteries > print |
| 001 | 1024596 | ||
| 005 | 20240712113056.0 | ||
| 024 | 7 | _ | |a 10.1021/acsami.9b16348 |2 doi |
| 024 | 7 | _ | |a 1944-8244 |2 ISSN |
| 024 | 7 | _ | |a 1944-8252 |2 ISSN |
| 024 | 7 | _ | |a 31825198 |2 pmid |
| 024 | 7 | _ | |a WOS:000507146100052 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-02270 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Vijayakumar, Vidyanand |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Dioxolanone-Anchored Poly(allyl ether)-Based Cross-Linked Dual-Salt Polymer Electrolytes for High-Voltage Lithium Metal Batteries |
| 260 | _ | _ | |a Washington, DC |c 2020 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712840688_17089 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Novel cross-linked polymer electrolytes (XPEs) are synthesized by free-radical copolymerization induced by ultraviolet (UV)-light irradiation of a reactive solution, which is composed of a difunctional poly(ethylene glycol) diallyl ether oligomer (PEGDAE), a monofunctional reactive diluent 4-vinyl-1,3-dioxolan-2-one (VEC), and a stock solution containing lithium salt (lithium bis(trifluoromethanesulfonyl)imide, LiTFSI) in a carbonate-free nonvolatile plasticizer, poly(ethylene glycol) dimethyl ether (PEGDME). The resulting polymer matrix can be represented as a linear polyethylene chain functionalized with cyclic carbonate (dioxolanone) moieties and cross-linked by ethylene oxide units. A series of XPEs are prepared by varying the [O]/[Li] ratio (24 to 3) of the stock solution and thoroughly characterized using physicochemical (thermogravimetric analysis–mass spectrometry, differential scanning calorimetry, NMR, etc.) and electrochemical techniques. In addition, quantum chemical calculations are performed to elucidate the correlation between the electrochemical oxidation potential and the lithium ion–ethylene oxide coordination in the stock solution. Later, lithium bis(fluorosulfonyl)imide (LiFSI) salt is incorporated into the electrolyte system to produce a dual-salt XPE that exhibits improved electrochemical performance, a stable interface against lithium metal, and enhanced physical and chemical characteristics to be employed against high-voltage cathodes. The XPE membranes demonstrated excellent resistance against lithium dendrite growth even after reversibly plating and stripping lithium ions for more than 1000 h with a total capacity of 0.5 mAh cm–2. Finally, the XPE films are assembled in a lab-scale lithium metal battery configuration by using carbon-coated LiFePO4 (LFP) or LiNi0.8Co0.15Al0.05O2 (NCA) as a cathode and galvanostatically cycled at 20, 40, and 60 °C. Remarkably, at 20 °C, the NCA-based lithium metal cells displayed excellent cycling stability and good capacity retention (>50%) even after 1000 cycles. |
| 536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 0 |
| 536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 1 |
| 536 | _ | _ | |a FestBatt-Polymere - Materialplattform 'Polymere' im Rahmen des Kompetenzclusters für Festkörperbatterien (13XP0175A) |0 G:(BMBF)13XP0175A |c 13XP0175A |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Diddens, Diddo |0 P:(DE-Juel1)169877 |b 1 |
| 700 | 1 | _ | |a Heuer, Andreas |0 P:(DE-Juel1)176646 |b 2 |u fzj |
| 700 | 1 | _ | |a Kurungot, Sreekumar |0 0000-0001-5446-7923 |b 3 |
| 700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 4 |u fzj |
| 700 | 1 | _ | |a Nair, Jijeesh Ravi |0 P:(DE-Juel1)171863 |b 5 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acsami.9b16348 |g Vol. 12, no. 1, p. 567 - 579 |0 PERI:(DE-600)2467494-1 |n 1 |p 567 - 579 |t ACS applied materials & interfaces |v 12 |y 2020 |x 1944-8244 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.gif?subformat=icon |x icon |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.jpg?subformat=icon-180 |x icon-180 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024596/files/vijayakumar-et-al-2019-dioxolanone-anchored-poly%28allyl-ether%29-based-cross-linked-dual-salt-polymer-electrolytes-for.jpg?subformat=icon-640 |x icon-640 |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:1024596 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169877 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)176646 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 0000-0001-5446-7923 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)166130 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)171863 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 1 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-25 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2023-10-25 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2023-10-25 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|