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Abstract: Metal–organic chemical vapor deposition (MOCVD) is a key method for scalable synthesis
of two-dimensional transition metal dichalcogenide (2D-TMDC) layers. However, it faces several
challenges, such as the unintentional co-deposition of carbon impurities resulting from the pyrol-
ysis of metal–organic precursors. This study investigates the chemical features of carbon and its
impact on the photoluminescence property and air stability of 2D-MoS2. Using X-ray photoemission
spectroscopy (XPS), it was found that the carbon impurities show characteristics similar to those
of sp2-bonded graphitic carbon. Upon prolonged (20–40 weeks) exposure to the atmosphere, the
incorporated carbon appears to react with 2D-MoS2, forming a MoS2−xCx solid solution. At the
same time, a gradual decrease in the S/Mo ratio implies the formation of sulfur vacancies was also
observed. These two processes lead to crystal degradation over time, as evidenced by the gradual
quenching of the Raman and photoluminescence (PL) peaks. More detailed PL analyses suggest a
charge transfer mechanism between sp2-carbon/2D-MoS2 and 2D-MoS2/air-adsorbates, which, in
the short term, could alter PL emissions and appear to further intensify the degradation of 2D-MoS2

in the long-term. The findings highlight the strong impact of unintentionally co-deposited carbon on
the optical properties and air stability of MOCVD 2D-MoS2 layers.
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1. Introduction

Two-dimensional transition metal dichalcogenides (2D-TMDCs) and their heterostruc-
tures have been utilized to demonstrate a variety of electronic and optoelectronic devices
such as field-effect transistors (FET) [1], photodetectors [2], memory devices [3], light-
emitting diodes (LED) [4], solar cells, sensors [5], etc. However, to transfer all these proof-
of-concept devices into commercial applications, many challenges still have to be overcome.
Some of them are developing scalable synthesis methods, robust layer transfer processes, as
well as device-level issues such as high contact resistance and low carrier mobility [6,7]. Re-
garding synthesis, a variety of deposition techniques have been explored. These range from
molecular beam epitaxy (MBE) [8,9], physical vapor deposition (PVD) [10–12], chemical
vapor transport (CVT) [13,14], chemical vapor deposition (CVD) [15,16], and metal–organic
chemical vapor deposition (MOCVD) [17–21]. MOCVD is known as an established scalable
deposition method for compound semiconductors with industrial multi-wafer tools yield-
ing superior homogeneity and reproducibility. However, optimal tool design, synthesis
conditions and precursor chemistries [22] of MOCVD processes for TMDCs still have to
be developed. In particular, reactive carbon radicals in the reaction chamber originating
from the pyrolysis paths of metal–organic precursors [21,23] can lead to unintentional
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co-deposition of carbon impurities. Carbon co-deposition has also been reported in the
CVD of MoS2, originating from impurities present in the MoO3 and S powders used as
precursors [24]. The incorporation of carbon into 2D-MoS2 during the MOCVD process, as
well as some approaches to avoid it, have been reported [21,25–27]. For example, Schaefer
et al. have shown that the addition of H2 to the reaction chamber can reduce carbon incor-
poration into the 2D layer through the etching of the domain edges. The presence of carbon
was confirmed by Raman spectroscopy measurement. Carbon-related peaks were found at
around 1360 and 1600 cm−1, in analogy to the D and G bands of graphene [28]. A reliable
solution to fully mitigate carbon co-deposition is still under investigation. Moreover, in
most cases, carbon-related Raman signatures have been the sole criterion for validating the
presence of carbon. Lower concentrations may have been overlooked probably due to the
relatively low sensitivity of Raman spectroscopy in comparison to other methods such as
X-ray photoemission spectroscopy (XPS). Although these works have been dedicated to
investigating the co-deposition of carbon during MOCVD, more detailed investigations
are yet to be performed to fully comprehend its impact on the properties of 2D-TMDC
layers. Vulnerability of 2D-TMDCs, both synthetic (obtained by, e.g., CVD, MOCVD, ALD
(atomic layer deposition), etc.) and exfoliated from bulk single crystals against ambient-air
exposure, has already been addressed in the literature. However, it was found that synthetic
2D-TMDCs typically possess a higher density of imperfections, such as grain boundaries,
edge defects, point defects, impurities etc. [29–31]. This does not only degrade electrical
properties, e.g., mobility in FET [6], but also turns the material more susceptible to surface
reactions with atmosphere and hence to a faster degradation over time. For example, Gao
et al. [32] investigated the ambient aging of CVD-MoS2 grown on SiO2/Si. They have
shown that severe oxidation occurs at grain boundaries. After one year, MoS2 was found
to be significantly degraded, evidenced by scanning electron microscopy (SEM) showing
structural changes and cracking. Raman and PL spectra also revealed a serious quenching
of intensity over time, a clear indication of a “reduced amount of emitting material”. Peto
et al. [33] investigated the oxidation mechanism of 2D-MoS2 obtained from single-crystal
exfoliation via scanning tunneling microscopy/spectroscopy (STM/STS). The authors have
shown that upon ambient exposure, O atoms tend to be spontaneously incorporated into
the basal plane of MoS2. Individual S atoms are replaced with O which is consequently
leading to a 2D-MoS2−xOx solid solution. This oxidation process preserves the original
crystal lattice with Mo sites in trigonal prismatic configuration. In other works, the role of
substrate hydrophobicity [34] and ambient light [35] during the aging of 2D-TMDC layers
has been investigated. To the best of our knowledge, the air stability of MOCVD 2D-TMDC
layers related to the role of C impurities has not been reported in literature. In this work, we
have systematically studied the chemical features of unintentionally co-deposited carbon
impurities in MOCVD 2D-MoS2 and their impact on the atmospheric aging behavior and
photoluminescence property of these materials.

2. Materials and Methods

Two-dimensional-MoS2 MOCVD. The 2D-MoS2 layers were epitaxially grown in
an AIXTRON MOCVD reactor. Sapphire (0001) with a nominal offcut of 0.2o towards
m-plane was used as substrate. Prior to deposition, the sapphire was desorbed at 1050 ◦C in
200 hPa H2 atmosphere for 15 min [36]. Depositions were performed at constant chamber
pressure and temperature of 30 hPa and 825 ◦C, respectively, by H2S-free MOCVD. Di-tert-
butyl sulfide (DTBS) and molybdenum hexacarbonyl (Mo(CO)6) were used as sulfur and
molybdenum precursors, and N2 as the carrier gas. The molar chalcogen/metal precursor
ratio was kept at the constant value of ≈1000 for all depositions. Three different cool-down
procedures after the growth step, namely, 2 K min−1 in N2/DTBS (FlowN2: 30,000 sccm;
FlowDTBS: 20 µmol/min), ballistic (≈20 K min−1) cool-down in N2 and 2 K min−1 in N2,
have been used, which are denoted as 2DTBS, BN2, and 2N2, respectively. Deposition took
≈6 h to obtain a nearly coalesced monolayer (ML) with sparse bilayer (BL) and trilayer
(TL) nucleation.
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X-Ray Photoemission Spectroscopy (XPS). For XPS measurements, a Versa Probe
5000 tool manufactured by Physical Electronics was used. Monochromatic X-rays are
generated by an Al Kα source with an excitation energy of 1486.6 eV. The low-power mode
with 25 W with an X-ray spot diameter of about 100 µm was used. To compensate for
charging effects, electron neutralization was performed with a neutralizer emission current
of 20 µA and a neutralizer bias of 1.37 eV. The Au 4f peak at 84.0 eV was used as the
reference to calibrate the binding energy (BE) scale of XPS spectra. Survey scans were
performed by 187 eV pass energy. Two high-resolution scans with pass energy set at 10 and
20 eV were performed with step sizes of 0.1 and 0.2 eV, respectively. The latter one was
used to carry out quantitative analyses. Regarding the XPS core level analyses, a Shirley
function for background subtraction followed by Voigt lineshape deconvolution was used.
To characterize the as-deposited 2D layers, they have been stored in an N2 box to minimize
atmospheric exposure. The samples were unboxed just before measurement. After the first
measurement, the batch of samples was kept in gel boxes and additionally wrapped in Al
foil in a clean-room atmosphere to rule out any effect from ambient light over the course of
several weeks, during which the measurements were repeated.

Photoluminescence and µ-Raman Spectroscopy. The as-deposited and aged samples
were characterized using PL and µ-Raman spectroscopy. Non-resonant Raman and PL
spectra were acquired at room temperature using a WiTec confocal Raman microscope
equipped with a solid-state 532 nm laser. The laser line was focused on the samples by a
100× microscope objective lens. The collected light was dispersed by 300 grooves/mm and
1800 grooves/mm gratings for PL and µ-Raman measurements, respectively. To prevent
laser-induced local heating, the laser power was kept at a low value of 0.7 mW. All PL
spectra were fitted using pseudo-Voigt line shapes for A−, A0, and B emissions.

Scanning Electron Microscopy (SEM). Morphological characterization of as-deposited
and aged samples was performed by scanning electron microscopy (SEM, Zeiss Sigma,
Oberkochen, Germany). To quantify the contribution of ML, BL and TL domains as well as
the total surface coverage, image processing was performed using the software ImageJ [37].

3. Results and Discussion
3.1. Characterization of As-Deposited 2D-MoS2 Layers

Segmented SEM pictures of the as-deposited samples are shown in Figure 1a(i)–(iii).
Analyses of multiple images using ImageJ reveal similar ML and BL coverage for all 2DTBS,
2N2, and BN2 samples. Values for ML and BL are found to be ≈42% and ≈48%, respectively.
All three samples also show a small amount of TL nucleation of about 3% (layer coverages
of multiple samples calculated by ImageJ are given in Figure S1a). SEM investigations
revealed the uniformity and reproducibility of the 2D layers. We chose three different
cool-down conditions in order to produce samples that differ primarily in carbon content
while maintaining similar morphology as well as ML and BL coverage. By employing
identical growth parameters and only altering the cool-down conditions, we ensure reliable
comparisons between samples, which are discerned only by the different co-deposited
carbon content.

PL maps of A exciton emission intensity of the as-deposited samples are shown in
Figure 1b(i)–(iii). The PL intensity varies considerably between the three different as-
deposited samples; 2DTBS and 2N2 show the lowest and highest PL intensity, respectively;
this can be linked to the chemical composition of the layers, which will be discussed in
more detail later in this section. The corresponding Raman spectra of the samples are also
shown in Figure 1c; the characteristic MoS2 Raman peaks, namely, E2g and A1g, are located
at ≈383.8 and ≈405.3 cm−1, respectively. These are the first-order Raman modes associated
with in-plane and out-of-plane vibrations, respectively [38]. The distance between the two
peaks is found to be 21.5 cm−1 and confirms that the surface coverage is dominated by ML
and BL contributions in agreement with the SEM analyses [39].
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Figure 1. (a) Segmented SEM images of as-deposited samples with different cool-down condition
(2DBS, BN2 and 2N2). The white, grey and black colors represent sapphire, ML and BL, respectively;
and (b) corresponding PL map of A exciton intensity extracted from a 5 µm × 5 µm area. (c) Raman
spectra of as-deposited samples.

XPS analyses of the as-deposited samples (before exposure to the atmosphere) are given
in Figure 2. Since the C1s peak is not dominated by adventitious carbon, the peaks were
calibrated with respect to the Al2p peak, explained in detail in the supporting information.
The survey scans shown in Figure 2a are dominated by Mo3d, S2p, Al2p, Al2s, C1s and O1s.
Mo, S, and C can be ascribed to the MOCVD process. Al and O are attributed to the Al2O3
substrate. Due to the desorption step prior to deposition (see Section 2), negligible carbon
contamination on the sapphire is. It should be noted that the substrate signals are detectable
because of the ultra-low thickness of the 2D-MoS2, which is 1–3 ML (≈0.72–2.16 nm) [40].

The Mo3d-S2s and S2p core levels are shown in Figure 2c(i) and (ii), respectively. The
corresponding curves obtained from a reference MoS2 bulk single crystal (HQ-Graphene,
purity > 99.995%), denoted as SC, are also shown for comparison. The binding energy
difference between Mo3d5/2 and S2p3/2 (∆BEMo3d-S2p) is found to be 67.1 eV in the single-
crystal MoS2, which is in agreement with the literature [41,42]. The corresponding values
of ∆BEMo3d-S2p for 2DTBS, 2N2, and BN2 samples are extracted as 67.1, 67.2, and 67.2 eV,
respectively. Considering the binding energy difference in addition to the absolute binding
energy values makes XPS analyses more reliable because the absolute values can be shifted
as a result of, e.g., doping [41], impurities [21], and charging [43]. The core levels verify the
formation of pure MoS2 with neither oxide nor carbide components being detected.

The zoomed-in survey spectra, including the Mo3d, S2p, and C1s core levels, along
with the S/Mo stoichiometry ratio and the carbon concentration in atomic%, are given in
Figure 2b(ii). The stoichiometries were determined by evaluating the ratio between the S2p
and Mo3d peak areas and then were normalized to the stoichiometry of the reference single-
crystal MoS2 [41,44] assumed to have an S/Mo ratio of 2.0. The carbon atomic percentage
obtained from the quantitative analysis represents the contribution of the C-C bond shown
in blue in Figure 2b(i). The XPS analysis data and the PL intensity of as-deposited samples
are summarized in Table 1.
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Figure 2. XPS analysis: (a) survey spectra, (b) fitted high-resolution C1s core levels (i), and zoomed-in
survey spectra showing S2p, Mo3d and C1s peaks and the corresponding carbon (C-C bond) atomic
percentage and S/Mo ratio, obtained from quantitative analysis (ii), (c) high-resolution Mo3d-S2s (i)
and S2p core levels (ii); the single-crystal (SC) core levels are also shown for comparison, (iii) XPS
C1s core level of bare sapphire stored in cleanroom atmosphere and that of the as-deposited 2DTBS
sample, displaying the C-C bond in green and blue, respectively.

Table 1. Binding energy, carbon concentration, PL A exciton intensity of as-deposited samples and
the single-crystal reference.

Mo 3d5/2
(eV)

S 2p3/2
(eV)

Carbon
(Atom. %)

PL A Intensity *
(cts)

SC 229.6 162.5 -
2DTBS 228.6 161.5 5 57.52

2N2 228.6 161.4 3 87.56
BN2 228.7 161.5 4 66.4

* The values obtained by weighted averaging the histogram plot of the PL intensity maps (Figure S4).

The S/Mo stoichiometry ratios for all three samples deviate slightly relative from
the ideal value of 2.0, indicating the deposition of sulfur-rich or sulfur-deficient 2D-MoS2
layers in comparison to the exfoliated single-crystal counterpart [30,45–47]. It is noteworthy
that the excess sulfur in the 2DTBS and BN2 samples with an S/Mo ratio higher than 2.0
suggests that some sulfur atoms are present in a different chemical environment other than
the Mo-S bond [10]. However, the concentration of these species is not high enough to be
distinguished in the S2p core levels (see Figure S2a).

To analyze the carbon species found in our layers in more detail, the high-resolution
XPS spectra of the C1s core levels were deconvoluted. The fitted spectra constitute C-C,
C-O, and C=O bonds, with the C-C bond dominating the spectra (Figure 2b(i)). It was
found that the full width at half-maximum (FWHM) values of the C-C-bond-related peak
(blue in Figure 2b(i)) are 1.02 eV, 1.10 eV and 1.08 eV for 2DTBS, 2N2 and BN2, respectively.
In comparison, the FWHM values of the carbon peak measured on single-crystal MoS2 and
bare sapphire (Figure S2b(ii),(iii)), which originate only from adventitious carbon, were
found to be 1.49 eV and 1.48 eV, respectively, showing ≈40% increase relative to the C1s
peak (C-C bond) of as-deposited samples. The sharper C1s peak in the MOCVD 2D-MoS2
samples is an indication of a more structured carbon species in these 2D layers.

Moreover, the C1s lineshape shows a broader asymmetric tail toward higher binding
energies, which is typical for graphite and graphene [48–53]. On the other hand, the binding
energy difference between the dominant C1s peak (C-C bond) and Al2p (∆BEC1s-Al2p) on
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bare sapphire (Figure S2b(i),(ii)) is found to be 209.8 eV; yet ∆BEC1s-Al2p for 2DTBS, 2N2 and
BN2 is measured to be 209.2, 209.2 and 209.3 eV, respectively. The systematic shift of the C1s
peak towards lower values by ≈0.6 eV in the MOCVD samples moves it close to the typical
BE position for the sp2-hybridized C bond in graphene and graphite [48,50,51,54–56]. As
an example, the C1s core level of sapphire stored in the atmosphere and that of the as-
deposited 2DTBS sample are shown in Figure 2c(iii); the C-C bond in the 2DTBS sample
features a narrower peak located at lower BE relative to the C-C bond in bare sapphire.
Thus, it can be concluded that the carbon species incorporated into 2D-MoS2 layers during
MOCVD tend to show more graphitic characteristics than those of adventitious carbon. It
is worth mentioning that the wide-range Raman spectra of the samples do not show the
carbon-related peaks expected at ≈1360 and ≈1600 cm−1. (Figure S3)

The variation of PL intensities in the as-deposited samples shown as A exciton PL
maps in Figure 1b(i)–(iii) can be attributed to the concentration of sp2-C impurities in these
samples. The A exciton peak consists of the neutral A0 exciton and the negatively charged
A− trion with emissions at around 1.89 eV and 1.86 eV, respectively [21,57]. A0 usually
dominates the spectra because of reduced non-radiative recombination probability [58]. A−

appears when MoS2 has a significant electron concentration in the conduction band (n-type
characteristic), which can be induced by, e.g., sulfur vacancies, chemical doping [59], [60],
or strain [61,62]. It can be seen that the PL intensity is clearly reduced by the increase in
the sp2-C concentration (see Table 1). Accordingly, samples 2DTBS and 2N2 with five and
three atomic% carbon feature the lowest and highest intensity, respectively. It has already
been reported that 2D-MoS2 PL attenuation occurs in the presence of carbon, e.g., if MoS2
forms a heterostructure with graphene quantum dots (GQD) or graphene [57,63]. This
observation is attributed to the transfer of electrons from GQD/graphene to MoS2, which
leads to an attenuation in A0 exciton emissions [63–65].

3.2. Aging of MOCVD 2D-MoS2

All samples were exposed to ambient air for 40 weeks, with several XPS measurements
performed during this time span. The FWHM values of XPS Mo3d5/2 and S2p3/2 given in
Figure 3b(i) show a gradual increase, which is an indication of the reduced crystal quality of
the 2D-MoS2 layers. This could be due to various factors, such as accumulation of structural
defects, impurities, oxidation, etc.

Moreover, desulfurization has also been evidenced by XPS analysis; the S:Mo stoi-
chiometry ratio measured over the 40-week period shows a gradual decrease (Figure 3b(ii)).
The highest degree of sulfur loss is detected for the 2DTBS sample, with ≈8%.

XPS Mo3d and S2p core levels of the 40-week-aged samples (Figure 3a(i) and (iii)) do
not indicate any oxidation after 40 weeks. Oxidation would be identified by additional
shoulders located towards higher binding energies relative to the Mo3d5/2 and Mo3d3/2
peaks of MoS2 caused by Mo-O bonds. Possibly, these features lie below the sensitivity
limit of the XPS tool, which is a ≈1 atomic % concentration. However, in some other works
utilizing XPS measurements, the formation of significant densities of transition metal oxides
after a few weeks was reported [32,66]. The fact that the concentration of oxide species did
not reach the XPS detection limit after 40 weeks might be attributed to the higher stability
of the 2D layers investigated in this work. Such higher stability could be due to the (nearly)
coalesced morphology of the layers and the fact that the stability is especially dependent
on the density of defects (including edge defects) in the pristine material [33,67].

It should be noted that the number of oxide compounds or O2/H2O on the sur-
face/edges of 2D-MoS2 layers may not reach the XPS-detectable level (which is ≈1 atomic%),
although physiosorbed or chemisorbed O2/H2O species are likely present. Previous stud-
ies, such as the work by Peto et al. [33], utilizing a more sensitive method (STM/STS),
have demonstrated the formation of atomic level solid-solution-type 2D-MoS2−xOx formed
during ambient exposure of single-crystal MoS2 while XPS failed to detect any covalent
oxygen bonding to the top sulfur atoms or the formation of oxidized MoO3 areas. Addi-



Surfaces 2023, 6 357

tionally, the presence of adsorbed O2/H2O on 2D-MoS2 can be confirmed by Raman and
PL spectroscopy.
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Moreover, the XPS core levels show a minor yet clearly detectable amount of carbide
species after 40 weeks of ambient exposure for the 2DTBS and BN2 samples. These
species appeared as a shoulder peak towards lower binding energies of both Mo3d and
S2p core levels (marked by the asterisk symbol in Figure 3a(i),(iii)). Deconvoluted high-
resolution XPS spectra of the Mo3d, S2p (Figure 3a(ii),(iv)), and C1s (Figure S2c) core levels of
samples 2DTBS and BN2 revealed that the newly emerged shoulder peak can be attributed
to MoS2−xCx. The emerged carbide peaks are located at binding energies which are
0.85, 0.65, and 0.86 eV lower than those of Mo3d5/2, S2p3/2, and C1s (C-C bond) peaks,
respectively, which is in good agreement with the values reported in the literature [68,69].
The formation of MoS2−xCx suggests that sp2-C tends to react with MoS2 over time. The
atomic concentrations of MoS2−xCx species detected in samples 2DTBS and BN2 were found
to be ≈12% and ≈7%, respectively. The XPS O1s peak, as well as the SEM morphology of
aged layers, are given in Figure S3.

The formation of carbide species upon exposure of 2D-TMDC layers to ambient is
potentially exclusive to the MOCVD layers, in which sp2-carbon impurities are co-deposited
due to the use of metal–organic precursors in this method.

Raman spectra of the samples exposed to the atmosphere measured at different time
intervals are shown in Figure 3c(i); the intensity of the characteristic E2g and A1g peaks
for all three samples show a gradual decrease over time, which is an indication of layer
degradation. Moreover, the A1g peak exhibits a gradual shift toward higher frequencies
(Figure 3c(ii)); this can be attributed to the adsorption of air molecules on the surface, which
restrain the out-of-plane vibrational mode and introduce compressive strain along the c
direction of the unit cell [70].

The fitted PL spectra for the as-deposited samples after one week and after ten weeks of
exposure to the atmosphere are given in Figure 4a. As explained before, in the as-deposited
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samples, the intensity of the trion peak A− and, accordingly, the IA−
IA0

ratio increases with a

rising sp2-C concentration.
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Interestingly, in the one-week-aged samples, unlike their as-deposited counterparts,
it was observed that the IA−

IA0
ratio is inversely correlated to sp2-C concentration. This

observation can be attributed to the interaction of the 2D-MoS2 film with the ambient
atmosphere. The accumulation of negative charge in the 2D-MoS2 transferred from the
sp2-C (as described before) makes the adsorption of O2/H2O to the 2D-MoS2 energetically
more favorable [34]. The enhanced adsorption results from a probably reduced work
function (WF) of 2D-MoS2 due to the charge transfer n-doping by sp2-C [71]. Following
that, adsorbed H2O/O2 molecules deplete the negative charges, leading to a reduced A−

recombination and enhanced A0 exciton emissions.
The PL of 10-week-aged samples (Figure 4a(iii)) shows a significant quenching for

all three samples, which is an indication of degraded layers and the reduction in emitting
materials regardless of the concentration of sp2-C.

The PL intensity of the A exciton and its energy position over the course of 20 weeks
of ambient exposure is presented in Figure 4b(i) and (ii), respectively. Exciton emission
energies show a gradual blue shift over a period of ≈15 weeks. After that, especially for the
2DTBS sample (with the highest carbon content), a slight red-shift occurs. The PL emission
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blue-shift is consistent with the presence of H2O/O2 adsorbates at the surface and the
consequent p-doping of MoS2 layers [72] and confirms the trend of the gradual blue-shift
of the Raman A1g vibrational mode discussed previously. The consecutive red shift might
be attributed to the general degradation mechanisms of MoS2 exposed to the atmosphere.

The atmospheric aging of MOCVD 2D-MoS2 involves multiple factors that can ei-
ther enhance or quench the PL emission. For example, the adsorption of O2/H2O air
molecules can lead to the p-doping of MoS2, resulting in an increase in PL emissions [73,74].
Conversely, the aging process can also introduce various defects, acting as non-radiative
recombination centers. Depending on the dominant factor at different stages of aging, the
PL emissions can either be enhanced or exhibit a drop in intensity. An illustrative example
is observed in the 2DTBS sample, which has the highest sp2-C content. During the early
stages of aging, this sample shows an enhancement in the PL emission, suggesting the
dominant effect of p-doping; however, after 20 weeks, a more pronounced quenching of
the PL is observed in comparison to the other samples. This quenching can be attributed
to the increased formation of structural defects, as supported by XPS analysis revealing
the presence of carbide species. The dominant mechanisms defining PL emissions during
atmospheric aging of MOCVD 2D-MoS2 are schematically presented in Figure 5.
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Figure 5. Photoluminescence (PL) intensity modulation mechanisms during atmospheric aging of
MOCVD 2D-MoS2.

4. Conclusions

In summary, we have investigated the photoluminescence property and air stability
of nearly coalesced MOCVD 2D-MoS2 layers, considering the role of unintentionally co-
deposited carbon impurities. The characteristics and impact of incorporated carbon have
been studied using XPS and PL characterization and revealed its graphitic sp2-C character.
Carbon impacts the photoluminescence properties of 2D-MoS2 by effective n-type doping,
facilitating a charge transfer between 2D-MoS2 and atmospheric adsorbates after exposure
to air. It is especially notable that these effects are observed for C concentrations lying
below the detection limit of Raman spectroscopy. O2/H2O adsorption was evidenced by PL
and Raman A1g vibrational mode blue shifts. On a timescale of 20–40 weeks, sp2-C tends
to react with 2D-MoS2 and forms MoS2−xCx. However, the precise location of impurities
and adsorbates, as well as the exact chemical reactions, are not known and yet to be more
thoroughly investigated, e.g., by more sensitive experimental methods (e.g., STM/STS).
Moreover, it was found that even after 40 weeks of exposure, the 2D layers studied in this
work did not show any oxidation detectable by XPS measurement. However, both PL and
Raman spectroscopy of the aged layers indicated a clear drop in intensity, regardless of
their initial carbon concentration, which is an indication of crystal degradation.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/surfaces6040025/s1, Figure S1: extended SEM analyses of as-deposited
layers; Figure S2: fitted high-resolution of (a) Mo3d-S2s and S2p core levels of as-deposited samples,
(b) Al2p and C1s core levels of bare sapphire and C1s core level of single crystal MoS2; (c) C1s core
levels of 40-week-aged 2DBS and BN2 samples; Figure S3: XPS O1s spectra of as-deposited, 20-week-
and 40-week-aged samples, as well as SEM of 40-week-aged layers. Figure S4: extended µ-Raman
spectra of as-deposited samples and Figure S5: distribution of A0 PL intensity, obtained from the PL
maps given in Figure 1 [21,23,32,34,36,75–77].
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