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ABSTRACT: The operation of oxide-based memristive devices relies on the fast accumulation and depletion of oxygen vacancies by
an electric field close to the metal—oxide interface. Here, we show that the reversible change of the local concentration of oxygen
vacancies at this interface also produces a change in the thermal boundary resistance (TBR), i.e., a thermal resistive switching effect.
We used frequency domain thermoreflectance to monitor the interfacial metal—oxide TBR in (Pt,Cr)/SrTiO; devices, showing a
change of #20% under usual SET/RESET operation voltages, depending on the structure of the device. Time-dependent thermal
relaxation experiments suggest ionic rearrangement along the whole area of the metal/oxide interface, apart from the ionic filament
responsible for the electrical conductivity switching. The experiments presented in this work provide valuable knowledge about oxide
ion dynamics in redox-based memristive devices.
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H INTRODUCTION electrodes, and its accumulation close to the metal—oxide
anodic interface.”**’

Given the strong effect of oxygen vacancies on the thermal
conductivity of oxides, ' #7829 ywe hypothesize that, associated
with the electrical RS effect, there should be a change in the
thermal resistance of the metal/oxide interface: a thermal RS
effect. Studying the effect of oxygen vacancies on the thermal
resistance can contribute to the understanding of the heat
transport phenomena across interfaces in all-solid-state devices
with potential applications for energy harvesting.*’

On the other hand, the sensitivity of the RS effect to the
oxygen partial pressure and humiclityZ7’31’32 has revealed the
important role of metallic electrodes as storage and ion/
molecular conductors, beyond being mere surfaces for
electronic transfer. The exchange of ions across the metal/

Strategies for controlling the heat flow in solids comprise the
use of artificial interfaces,' > domain walls in ferromagnets and
ferroelectrics,® ™’ anisotropic mass distribution in nanowires, "’
or point defects in crystalline solids," ~'* among others.'* On
the other hand, achieving a dynamic manipulation of heat
transport implies the design of reconfigurable thermal
states,">™'? which poses a much bigger challenge, but it is
essential for dealing with thermal energy management in
electronics and other energy-demanding technologies.” Tonic
electrochemical intercalation”' ~* has stood out as a possibility
in recent years, although the slowness of switching and the use
of an ionic liquid/gel phase limit its applications.

However, the relatively large O*” ion mobility in several
transition-metal oxides enables the change of the local oxygen
concentration with an electric field, at a fast switching speed, in
simple two-terminal metal/oxide/metal devices.”* This is the
principle of the resistive switching (RS) effect: the reversible
switching between a high and a low electrical resistance state
(HRS and LRS, respectively) of a dielectric, with an electric
field.”® In oxides, RS usually occurs through the formation of
conducting filaments of oxygen vacancies between the metal
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Figure 1. (a) Schematic representation of the (Pt, Cr)/STO devices used in this work: epitaxial thin films of SrTiO; ~ 35 nm thick were deposited
on the top of a (001) Nb(0.5 wt %):SrTiO; single crystal, covering half the surface. (60/5) nm thick Au/Pt and Au/Cr contact pads of sizes
ranging from 10 X 10 ym?® to 600 X 600 um” were deposited for [-V curve testing. Interfacial thermal resistance was measured after the SET/
RESET operation by FDTR, focusing the pump/probe lasers with an objective on the surface of the pads. The spot radius of the pump laser was
changed in the range 1/¢* ~ 4—11 um. (b) I-V curves of one of the devices tested in this work: applying a positive voltage to the Pt electrode
(SET) drives the system to the LRS, while a negative bias (RESET) switches it to a HRS, in a fully reversible process. For the reproducibility and
endurance test, 350 SET/RESET consecutive sweeps were performed, and voltages for SET and RESET were Vg = 2.5 V and Vygeer = =5V,
respectively, with a step of 10 mV and a 30 mA CC. The red dashed line shows the forming process of the conducting filaments, and the inset
shows the stability experiment for the pristine state, HRS, and LRS for a Au/Pt/STO device. Electrical resistance was read every 10 min for 20 h,
with Vygap = 100 mV. (c) Voltage pulses performing SET/RESET and reading of the corresponding resistance states (LRS and HRS) demonstrate
the excellent electrical performance of our devices.

a) c) , -
30+ Cr/STO
LRS
OIS IAIIIITIO
A i > LRS
Pt or Cr ERRRR AT T =35 ‘
STOM . - HRS
ST oo, o High
I IO II oy 9 a0l ]
SR T R R R IR T PR T IR I IS I ° TBR o o
1 1
b) d) o (Hz)
14 . T : .
Cr/STO
12+ .
HRS : 25V %
% 10} (éEV 1
T < ey PUSTO
&5 T4 > 600y Aol - F 1
ST e /‘ :':‘._:‘ ) £ 8 % (RESED) 25V
> e te e titie s R, (SET)
3 KRR 5 I % 6l / |
& SSSSR Low é ‘/5\,
h AT RIS Y TBR 4t (RESET) -

HRS  LRS _ HRS _ LRS

Figure 2. Proposed microstructure of the (Cr,Pt)/STO interface in the LRS (a) and HRS (b), following Cooper et al’>” In the LRS, oxygen
vacancies and interstitial molecular O, accumulate in the oxide thin film and in the Pt electrode close to the interface, respectively. In the HRS, O,
moves back from the metal electrode into the film, filling the vacancies and restoring the structure of the interface. (c) Example of phase vs
frequency curves in FDTR experiments. Filled circles are the experimental data for the HRS and LRS, and the lines show the fitting to the thermal
transport model (see the text). (d) Reversible change in the interfacial TBR for Cr/STO and Pt/STO interfaces, after cycling the device between
the HRS and LRS. Despite the different absolute values of the TBR of the Cr/STO and Pt/STO interfaces, the ON/OFF ratio is & 20% in both
cases.

oxide interface and the microstructural stability of the interface Therefore, the goal of this work is 2-fold: (i) to probe and
itself in the LRS and HRS implies an ionic redistribution,* quantify the existence of a thermal RS effect, associated with
which could also affect the interfacial thermal resistance. the electrical RS, and (ii) to study the oxide-ion dynamics close
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to the interface for a better understanding of the RS
phenomenon itself.

B EXPERIMENTAL DETAILS

Two types of devices were studied in this work.

(i) (Pt, Cr)/STO devices: epitaxial thin films of SrTiO; (STO)
~35 nm thick, were grown by pulsed laser deposition on
(001)-Nb(0.5 wt 9%):SrTiO; substrates. The films were
deposited at 765 °C, P(O,) = 100 mTorr, and cooled down
to room temperature at S °C/min under the same atmosphere.
X-ray diffraction analysis shows a lattice parameter consistent
with stoichiometric deposition (see Figure S1 in the
Supporting Information). Top metallic electrodes of (60/5)
nm thick Au/Pt and Au/Cr with sizes ranging from 10 X 10 to
600 X 600 um?* were deposited for [-V curve testing. Pt or Cr
is in direct contact to STO and forms the metal/oxide
interface. Au is deposited on the top of Pt or Cr to serve as a
thermal transducer for optical thermal conductivity measure-
ments, as explained below.

(ii) (Pt, Cr)/Nb:STO devices: in this case, the metallic Au/
(Pt,Cr) electrodes are deposited directly on the top of a (001)-
Nb(0.5 wt %):SrTiO; substrate, which has been previously
annealed at T = 765 °C and P(O,) = 100 mTorr for 2 h.
Thermal annealing induces the segregation of SrO at the
surface, resulting in a robust RS effect (Figures S4 and S5,
Supporting Information).** As before, the active interface is
made of either Cr or Pt in direct contact to Nb:STO.

The electrical characterization was performed at room temperature
in air under atmospheric conditions. The devices were cycled between
the LRS and HRS (Vggr = 2.5 V/Viggpr = =S V) with a step of 10
mV and a 30 mA current compliance (CC). The forming process was
performed under the same conditions of the step and CC, but to a
higher voltage, Vi, = 3 V.

Thermal conductivity and thermal boundary resistance (TBR)
were measured by frequency domain thermoreflectance (FDTR)
using the 60 nm thick layer of Au as a transducer.”™’ In this optical
technique, the phase lag between a pump and a probe laser is fitted to
an analytical solution of the heat diffusion equation to obtain the
thermal properties of the sample (see the Supporting Information for
further details of the setup and fittings; Figures S6—S9).

B RESULTS AND DISCUSSION

Figure 1 shows the RS performance of a representative Pt/
STO device. After an initial forming process, the device can be
switched between an LRS (SET voltage +2.5 V) and an HRS
(RESET voltage —S V) hundreds of times without appreciable
degradation (Figure 1b,c); similar results were obtained for
Cr/STO (Supporting Information, Figure S2). In the
measurements, the sign corresponds to the voltage at the top
metallic electrode, and the bottom electrode is electrically
grounded (Figure la). The device is stable under ambient
conditions for days at 0 V, with an ON/OFF resistance ratio
~10.

We did not observe any dependence of the resistive states on
the size of the top metallic electrodes, at least in the range
studied in this work, from 10 X 10 to 600 X 600 um?>
(Supporting Information, Figure S3).

As explained before, the thermal properties of the devices
were obtained by fitting the phase data of FDTR experiments
on each metallic pad to an analytical solution of the heat
diffusion equation in a multilayer model.’*® An example of
experimental ¢(w) data, representative of the HRS and LRS, is
shown in Figure 2¢. For minimizing the number of fitting
parameters in the model, we determined most of them from
independent experiments so that the TBR of the metal/oxide

interface is the only free parameter of the fitting (see the
Supporting Information for further details).

For a reliable statistical determination of the TBR, 40
different ¢(w) curves were acquired on random points of each
Au/(Pt,Cr) pad. The measurements were done on 55 X 55, 71
X 71, and 600 X 600 um* pads, without appreciable
differences. Several pads were tested in each resistive state so
that between 100 and 200 phase shift curves were measured
and fitted to the thermal model to estimate the statistical
distribution of TBR in the LRS and HRS of a single device. A
low heating power of 1 mW was used in the experiments to
avoid temperature-induced migration of the interfacial
vacancies during the experiment. The main results of the
analysis of the FDTR experiments are shown in Figure 2d.
Some important observations can be made from these data.

(i) It is possible to induce a reversible change of the metal/
oxide TBR, with an electric field, associated with the
electrical HRS and LRS.

(ii) Although the absolute value of the TBR is larger for the
Cr/STO interface than for the Pt/STO interface, the
relative change upon electric field switching is & 20—
25% in both cases. The actual values of TBR can be
influenced by the assumption of a constant k(STO-film)
~ 2 Wm™' K' (see Table Sl in the Supporting
Information) independent of the electrical state of the
sample (HRS or LRS).”® However, as shown in Figure
2¢, there is a large change in the bare ¢(w) curves of the
HRS/LRS, which supports a variation of TBR between
both states.

(iii) The high TBR (H-TBR) and low TBR (L-TBR) are
related to the electrical LRS and HRS, respectively. The
larger TBR in the LRS implies a more defective interface
than in the HRS.

Regarding point (iii), Cooper et al.”” detected a substantial
increase of Ti’*, associated with the accumulation of oxygen
vacancies, Vg, close to the Pt/STO interface under a positive
bias (LRS). Moreover, the sensitivity of the resistive state to
the oxygen partial pressure in the surrounding atmosphere led
several authors to conclude that oxygen redistribution within
the active oxide layer cannot be the only source of RS, but
oxygen has to move across the metal—oxide layer during device
operation.””*"** Thus, under a positive bias, anodic oxidation
of lattice oxide ions in STO occurs, which are removed as
molecular oxygen according to”’

(SET): Of — %Oz(g) +2e” + V5 D

This results in a large accumulation of Vi close to the
metal—oxide interface and of molecular oxygen at the Pt grain
boundaries (Figure 2a).””*" Both mechanisms imply the
concentration of defects close to the metal/oxide interface,
which increases the TBR in the LRS.

On the other hand, O, reincorporates into the oxide lattice
at a negatively biased Pt/STO interface

(RESET): %Oz(g) + 26 + Vi = OF o
This restores an interface in the HRS more like that of the
pristine state (similar to its state before switching) and lowers
the interfacial thermal resistance (Figure 2b).
Therefore, the switching of the interfacial TBR reported
here supports the scenario of O,/Vgy exchange across the
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Figure 3. TBR of the Pt/STO (a) and Cr/STO (b) interfaces during consecutive SET and RESET cycles, which drives the device to the LRS and
HRS, respectively. After 3 consecutive cycles, the TBRs of the HRS and LRS are statistically equal, with a 99.99% significance level. (c) After 20 h
at 0V, the TBR increases up to a value like the LRS and recovers the tunability of the thermal device, which can be cycled again. (d) Forced
diffusion of oxygen vacancies (increasing voltage or time) produces a larger effect over the TBR of the Pt/STO interface; similar effects were found
in Cr/STO interfaces.
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Figure 4. (a) I-V curves for a Pt/Nb:STO device tested in this work. The Nb:STO single crystal was previously annealed at 765 °C (2 h) under
P(O,) = 100 mTorr before the deposition of Pt. A positive (negative) SET (RESET) voltage applied to the Pt electrode drives the system to the
LRS (HRS) in a fully reversible process. The inset shows the stability experiment for the device; the electrical resistance was read every 10 min for
15 h, with Vggap = 100 mV. (b) TBR switching of the Pt/Nb:STO interfaces after SET/RESET voltage. As for the other devices, at least 40
different ¢)(w) measurements were performed on the surface of each pad and fitted for a statistical distribution of the TBR in each electrical state.
The ON/OFF ratio is & 10% in this case.

metal/oxide interface in (eightwise) bipolar RS devices.*' The the device can be switched between the L-TBR and the H-
reversibility of the TBR indicates that the evolution of oxygen TBR again.
and reincorporation does not result in delamination of the Pt These experiments suggest that a RESET voltage induces a

depletion of Vi close to the Pt/STO interface; relaxation of Vg
at 0 V against a chemical potential gradient recovers some
vacancies close to the metal/oxide interface. This process of
relaxation occurs in the HRS, and it is consistent with the
change in its electrical resistance from 1.72 M, immediately
after RESET, to 0.72 MQ, after 20 h (inset to Figure 1).
However, the device remains in the HRS, with a large ON/
OFF ratio. Therefore, while the main cause of electrical RS is

electrode or irreversible damage of the Pt/STO interface, at
least in the conditions explored in this paper.

In Figure 3 we show the evolution of the TBR after
switching the device several consecutive times between the
HRS and LRS. The difference between H-TBR and L-TBR
reduces after 3—4 voltage cycles, where it reaches an
intermediate value (Figure 3a,b). However, letting the device

relax at 0 V in the HRS results in a gradual increase of the the formation/destruction of stable conducting filaments of Vg
TBR, and after 20 h, it reaches the value of H-TBR, despite across the oxide, the switching of the thermal resistance is
remaining in the state of high electrical resistance (Figure 3c). caused by the accumulation/depletion of Vg at the metal/

Applying a RESET voltage reduces the TBR (Figure 3c,d), and oxide interface.

15046 https://doi.org/10.1021/acsami.3c19285
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The possible effect of the redistribution of oxygen within the
metal electrode will have a small contribution to the reported
TBR due to the much lower sensitivity of our experiment to
small changes in the thermal conductivity of the metallic
electrode.

These relaxation experiments are consistent with the
homogeneous accumulation/depletion of Vg along the Pt/
STO interface (responsible of TBR switching), besides the
formation/breaking of a conducting filament across the oxide
(responsible of electrical RS).*

Similar TBR switching and relaxation was observed in Cr/
STO devices, which suggests a similar mechanism of oxygen
exchange across the metal/oxide interface. The ability of Cr,0,
to support a large concentration of diffusive oxygen vacancies ™
and the observation of RS in metal/Cr,O; devices™* point
toward the existence of a layer of this oxide close to the STO
film. Moreover, it has been reported that Cr,O; has a work
function similar to that of Pt,*>*¢ inducing the formation of a
Schottky barrier at the metal/STO interface and the presence
of a RS effect.

Finally, to discard any possible influence of the micro-
structure of the film on the existence of the interfacial thermal
RS effect, we tested the thermal RS of (Cr,Pt)/Nb:STO
devices. In this case, the metal electrode is deposited directly
on the top of a Nb:STO single crystal that has been annealed
at 765 °C (2 h) under P(O,) = 100 mTorr. The interface
between Pt and annealed Nb:STO presents a robust RS effect
(see Figures 4a and S4 in the Supporting Information).

The TBR measured in the two resistive states is shown in
Figure 4b for a Pt/Nb:STO device. As in the Pt/STO/
Nb:STO devices, there is a reversible switching between the L-
TBR and H-TBR, associated with the electrical HRS and LRS,
respectively. The effect is smaller, however, on the order of
10—12%.

B CONCLUSIONS

In this paper, we have experimentally demonstrated the
existence of a thermal RS effect in RS devices. The results
support the hypothesis of O,/Vy exchange across the metal/
oxide interface in (eightwise) bipolar RS devices. Although
with different intensities, the switching of the interfacial TBR
was observed in two types of devices (with and without the
STO film) and with two different interfaces, (Pt,Cr)/STO,
pointing to a general behavior. The magnitude of the change in
the TBR is too small for thinking about any practical
application at this stage, at least with STO devices, and
requires further optimization. However, Joule heating is crucial
in assisting the RS effect in resistive random-access memories;
therefore, having the actual values of TBR will be very
important for optimizing the performance of these devices.
The extreme sensitivity of thermal conductivity to point
defects makes it a very valuable technique for the investigation
of the Vg relaxation occurring close to the metal—oxide
interfaces, providing important information for the under-
standing of ion dynamics in RS devices.
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