001024633 001__ 1024633
001024633 005__ 20250203103352.0
001024633 0247_ $$2doi$$a10.1109/TAP.2022.3227010
001024633 0247_ $$2ISSN$$a0018-926X
001024633 0247_ $$2ISSN$$a1558-2221
001024633 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02306
001024633 0247_ $$2WOS$$aWOS:000965610700001
001024633 037__ $$aFZJ-2024-02306
001024633 082__ $$a620
001024633 1001_ $$0P:(DE-Juel1)184644$$aBangun, Arya$$b0$$eCorresponding author
001024633 245__ $$aOptimizing Sensing Matrices for Spherical Near-Field Antenna Measurements
001024633 260__ $$aNew York, NY$$bIEEE$$c2023
001024633 3367_ $$2DRIVER$$aarticle
001024633 3367_ $$2DataCite$$aOutput Types/Journal article
001024633 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712577564_27763
001024633 3367_ $$2BibTeX$$aARTICLE
001024633 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024633 3367_ $$00$$2EndNote$$aJournal Article
001024633 520__ $$aIn this article, we address the problem of reducingthe number of required samples for spherical near-field(SNF) antenna measurements by using compressed sensing (CS).A condition to ensure the numerical performance of sparserecovery algorithms is the design of a sensing matrix with lowmutual coherence. Without fixing any part of the samplingpattern, we directly find sampling points that minimize themutual coherence of the respective sensing matrix. Numericalexperiments show that the proposed sampling scheme yields ahigher recovery success in terms of phase transition diagramwhen compared to other known sampling patterns, such asthe spiral and Hammersley sampling schemes. Furthermore, wealso demonstrate that the application of CS with an optimizedsensing matrix requires fewer samples than classical approachesto reconstruct the spherical mode coefficients (SMCs) and farfieldpattern.Index Terms—Compressed sensing (CS), near-field to far-fieldtransformation (NFFFT), optimization, spherical near-field (SNF)antenna measurements.
001024633 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001024633 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024633 7001_ $$00000-0002-6435-1702$$aCulotta-Lopez, Cosme$$b1
001024633 773__ $$0PERI:(DE-600)2027421-X$$a10.1109/TAP.2022.3227010$$gVol. 71, no. 2, p. 1716 - 1724$$n2$$p1716 - 1724$$tIEEE transactions on antennas and propagation$$v71$$x0018-926X$$y2023
001024633 8564_ $$uhttps://juser.fz-juelich.de/record/1024633/files/2206.02181.pdf$$yOpenAccess
001024633 8564_ $$uhttps://juser.fz-juelich.de/record/1024633/files/2206.02181.gif?subformat=icon$$xicon$$yOpenAccess
001024633 8564_ $$uhttps://juser.fz-juelich.de/record/1024633/files/2206.02181.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024633 8564_ $$uhttps://juser.fz-juelich.de/record/1024633/files/2206.02181.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024633 8564_ $$uhttps://juser.fz-juelich.de/record/1024633/files/2206.02181.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024633 909CO $$ooai:juser.fz-juelich.de:1024633$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184644$$aForschungszentrum Jülich$$b0$$kFZJ
001024633 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001024633 9141_ $$y2024
001024633 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T ANTENN PROPAG : 2022$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024633 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T ANTENN PROPAG : 2022$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
001024633 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
001024633 920__ $$lyes
001024633 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001024633 980__ $$ajournal
001024633 980__ $$aVDB
001024633 980__ $$aUNRESTRICTED
001024633 980__ $$aI:(DE-Juel1)IAS-8-20210421
001024633 9801_ $$aFullTexts