Home > Publications database > Optimizing Sensing Matrices for Spherical Near-Field Antenna Measurements > print |
001 | 1024633 | ||
005 | 20250203103352.0 | ||
024 | 7 | _ | |a 10.1109/TAP.2022.3227010 |2 doi |
024 | 7 | _ | |a 0018-926X |2 ISSN |
024 | 7 | _ | |a 1558-2221 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-02306 |2 datacite_doi |
024 | 7 | _ | |a WOS:000965610700001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02306 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Bangun, Arya |0 P:(DE-Juel1)184644 |b 0 |e Corresponding author |
245 | _ | _ | |a Optimizing Sensing Matrices for Spherical Near-Field Antenna Measurements |
260 | _ | _ | |a New York, NY |c 2023 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712577564_27763 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this article, we address the problem of reducingthe number of required samples for spherical near-field(SNF) antenna measurements by using compressed sensing (CS).A condition to ensure the numerical performance of sparserecovery algorithms is the design of a sensing matrix with lowmutual coherence. Without fixing any part of the samplingpattern, we directly find sampling points that minimize themutual coherence of the respective sensing matrix. Numericalexperiments show that the proposed sampling scheme yields ahigher recovery success in terms of phase transition diagramwhen compared to other known sampling patterns, such asthe spiral and Hammersley sampling schemes. Furthermore, wealso demonstrate that the application of CS with an optimizedsensing matrix requires fewer samples than classical approachesto reconstruct the spherical mode coefficients (SMCs) and farfieldpattern.Index Terms—Compressed sensing (CS), near-field to far-fieldtransformation (NFFFT), optimization, spherical near-field (SNF)antenna measurements. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Culotta-Lopez, Cosme |0 0000-0002-6435-1702 |b 1 |
773 | _ | _ | |a 10.1109/TAP.2022.3227010 |g Vol. 71, no. 2, p. 1716 - 1724 |0 PERI:(DE-600)2027421-X |n 2 |p 1716 - 1724 |t IEEE transactions on antennas and propagation |v 71 |y 2023 |x 0018-926X |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024633/files/2206.02181.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024633/files/2206.02181.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024633/files/2206.02181.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024633/files/2206.02181.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024633/files/2206.02181.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1024633 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)184644 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE T ANTENN PROPAG : 2022 |d 2023-08-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-28 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b IEEE T ANTENN PROPAG : 2022 |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-28 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-8-20210421 |k IAS-8 |l Datenanalyse und Maschinenlernen |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-8-20210421 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|