001     1024633
005     20250203103352.0
024 7 _ |a 10.1109/TAP.2022.3227010
|2 doi
024 7 _ |a 0018-926X
|2 ISSN
024 7 _ |a 1558-2221
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02306
|2 datacite_doi
024 7 _ |a WOS:000965610700001
|2 WOS
037 _ _ |a FZJ-2024-02306
082 _ _ |a 620
100 1 _ |a Bangun, Arya
|0 P:(DE-Juel1)184644
|b 0
|e Corresponding author
245 _ _ |a Optimizing Sensing Matrices for Spherical Near-Field Antenna Measurements
260 _ _ |a New York, NY
|c 2023
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712577564_27763
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this article, we address the problem of reducingthe number of required samples for spherical near-field(SNF) antenna measurements by using compressed sensing (CS).A condition to ensure the numerical performance of sparserecovery algorithms is the design of a sensing matrix with lowmutual coherence. Without fixing any part of the samplingpattern, we directly find sampling points that minimize themutual coherence of the respective sensing matrix. Numericalexperiments show that the proposed sampling scheme yields ahigher recovery success in terms of phase transition diagramwhen compared to other known sampling patterns, such asthe spiral and Hammersley sampling schemes. Furthermore, wealso demonstrate that the application of CS with an optimizedsensing matrix requires fewer samples than classical approachesto reconstruct the spherical mode coefficients (SMCs) and farfieldpattern.Index Terms—Compressed sensing (CS), near-field to far-fieldtransformation (NFFFT), optimization, spherical near-field (SNF)antenna measurements.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Culotta-Lopez, Cosme
|0 0000-0002-6435-1702
|b 1
773 _ _ |a 10.1109/TAP.2022.3227010
|g Vol. 71, no. 2, p. 1716 - 1724
|0 PERI:(DE-600)2027421-X
|n 2
|p 1716 - 1724
|t IEEE transactions on antennas and propagation
|v 71
|y 2023
|x 0018-926X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024633/files/2206.02181.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024633/files/2206.02181.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024633/files/2206.02181.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024633/files/2206.02181.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024633/files/2206.02181.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024633
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184644
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T ANTENN PROPAG : 2022
|d 2023-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T ANTENN PROPAG : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21