001     1024665
005     20250912110151.0
024 7 _ |a 10.1162/imag_a_00074
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02338
|2 datacite_doi
024 7 _ |a 37645999
|2 pmid
024 7 _ |a WOS:001531527700014
|2 WOS
037 _ _ |a FZJ-2024-02338
082 _ _ |a 050
100 1 _ |a Zhao, Chenying
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A reproducible and generalizable software workflow for analysis of large-scale neuroimaging data collections using BIDS Apps
260 _ _ |a Cambridge, MA
|c 2024
|b MIT Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712662589_18043
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neuroimaging research faces a crisis of reproducibility. With massive sample sizes and greater data complexity, this problem becomes more acute. Software that operates on imaging data defined using the Brain Imaging Data Structure (BIDS)—the BIDS App—has provided a substantial advance. However, even using BIDS Apps, a full audit trail of data processing is a necessary prerequisite for fully reproducible research. Obtaining a faithful record of the audit trail is challenging—especially for large datasets. Recently, the FAIRly big framework was introduced as a way to facilitate reproducible processing of large-scale data by leveraging DataLad—a version control system for data management. However, the current implementation of this framework was more of a proof of concept, and could not be immediately reused by other investigators for different use cases. Here, we introduce the BIDS App Bootstrap (BABS), a user-friendly and generalizable Python package for reproducible image processing at scale. BABS facilitates the reproducible application of BIDS Apps to large-scale datasets. Leveraging DataLad and the FAIRly big framework, BABS tracks the full audit trail of data processing in a scalable way by automatically preparing all scripts necessary for data processing and version tracking on high performance computing (HPC) systems. Currently, BABS supports jobs submissions and audits on Sun Grid Engine (SGE) and Slurm HPCs with a parsimonious set of programs. To demonstrate its scalability, we applied BABS to data from the Healthy Brain Network (HBN; n = 2,565). Taken together, BABS allows reproducible and scalable image processing and is broadly extensible via an open-source development model.Reproducibility, BIDS Apps, software, MRI, big data, image processing
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jarecka, Dorota
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Covitz, Sydney
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chen, Yibei
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 4
|u fzj
700 1 _ |a Fair, Damien A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Franco, Alexandre R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Halchenko, Yaroslav O.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hendrickson, Timothy J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 9
|u fzj
700 1 _ |a Houghton, Audrey
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kiar, Gregory
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Macdonald, Austin
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Mehta, Kahini
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Milham, Michael P.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Salo, Taylor
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Hanke, Michael
|0 P:(DE-Juel1)177087
|b 16
|u fzj
700 1 _ |a Ghosh, Satrajit S.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Cieslak, Matthew
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Satterthwaite, Theodore D.
|0 P:(DE-HGF)0
|b 19
|e Corresponding author
773 _ _ |a 10.1162/imag_a_00074
|g Vol. 2, p. 1 - 19
|0 PERI:(DE-600)3167925-0
|p 1 - 19
|t Imaging neuroscience
|v 2
|y 2024
|x 2837-6056
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024665/files/imag_a_00074.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024665/files/imag_a_00074.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024665/files/imag_a_00074.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024665/files/imag_a_00074.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024665/files/imag_a_00074.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024665
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)177087
910 1 _ |a Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, United States †Corresponding Author: Theodore D. Satterthwaite (sattertt@pennmedicine.upenn.edu)
|0 I:(DE-HGF)0
|b 19
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-09-26T09:40:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-09-26T09:40:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-09-26T09:40:26Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21