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ABSTRACT
Neuroimaging research faces a crisis of reproducibility. With massive sample sizes and greater data complexity, this 
problem becomes more acute. Software that operates on imaging data defined using the Brain Imaging Data Struc-
ture (BIDS)—the BIDS App—has provided a substantial advance. However, even using BIDS Apps, a full audit trail of 
data processing is a necessary prerequisite for fully reproducible research. Obtaining a faithful record of the audit trail 
is challenging—especially for large datasets. Recently, the FAIRly big framework was introduced as a way to facilitate 
reproducible processing of large-scale data by leveraging DataLad—a version control system for data management. 
However, the current implementation of this framework was more of a proof of concept, and could not be immediately 
reused by other investigators for different use cases. Here, we introduce the BIDS App Bootstrap (BABS), a user-
friendly and generalizable Python package for reproducible image processing at scale. BABS facilitates the reproduc-
ible application of BIDS Apps to large-scale datasets. Leveraging DataLad and the FAIRly big framework, BABS 
tracks the full audit trail of data processing in a scalable way by automatically preparing all scripts necessary for data 
processing and version tracking on high performance computing (HPC) systems. Currently, BABS supports jobs sub-
missions and audits on Sun Grid Engine (SGE) and Slurm HPCs with a parsimonious set of programs. To demonstrate 
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1.  INTRODUCTION

Lack of reproducibility in neuroscience—and neuroimag-
ing in particular—has frequently been categorized as a 
“crisis.” While there are many facets to this crisis and 
barriers to reproducibility, one major source is analytic 
flexibility during image processing. Abundant analytic 
tools provide much greater flexibility in image process-
ing. However, varying methods applied to the same data-
set may lead to divergent results and conclusions 
(Botvinik-Nezer et  al., 2020; Maier-Hein et  al., 2017; 
Poldrack et al., 2017). These problems grow more acute 
as the size and complexity of imaging datasets increase. 
Large imaging data resources enhance statistical power 
(Button et al., 2013), and are often more diverse and rep-
resentative (Laird, 2021), resulting in more generalizable 
findings. While there has been a well-motivated push to 
create large imaging data resources, most academic 
investigators who are end-users of these data resources 
lack essential tools for conducting reproducible research 
with large-scale imaging datasets. Here, we introduce a 
user-friendly tool that facilitates fully reproducible pro-
cessing of large-scale neuroimaging datasets.

Recent progress in reproducibility has been greatly 
facilitated by use of standardized data structures. The 
Brain Imaging Data Structure (BIDS) is the standard format 
for organizing brain imaging data from diverse modalities 
(structural, diffusion, functional images, etc) (Gorgolewski 
et al., 2016). BIDS includes not only the images, but also 
images’ metadata in sidecar JSON files (e.g., imaging 
parameters). BIDS Apps read such metadata to automati-
cally configure the correct processing workflow, making 
them robust to heterogeneous data from different subjects 
and sessions. Although image processing software often 
depends on other software or packages, BIDS Apps are 
containerized (i.e., as Docker or Singularity container 
images) to encapsulate all dependencies and achieve por-
tability even on different platforms, for example, different 
high performance computing (HPC) clusters (Gorgolewski 
et  al., 2017). Example BIDS Apps are QSIPrep (https://
github​.com​/PennLINC​/qsiprep; Cieslak et  al., 2021) and 
fMRIPrep (https://github​.com​/nipreps​/fmriprep; Esteban 
et  al., 2019, 2020); similar BIDS Apps such as XCP-D 
(https://github​.com​/PennLINC​/xcp​_d; Adebimpe et  al., 

2023; Ciric et  al., 2018) consume preprocessed output 
from BIDS Apps—or “BIDS derivatives”—and generate 
additional derived measures.

While containerized BIDS Apps provide a major 
advance for reproducible neuroscience, they do not 
automatically preserve a full audit trail along the way. 
Complete provenance of data processing results should 
answer what input data were, which version of the BIDS 
App was used, and how it was used (exact commands 
and parameters for running BIDS Apps, etc). Such a full 
audit trail of data processing is a necessary prerequisite 
for fully reproducible research. However, obtaining a 
faithful record of this audit trail is challenging—especially 
for large datasets that are processed using HPC clusters.

Version control tools provide a well-described way to 
record a full audit trail and enhance reproducibility. Git 
(https://git​-scm​.com/) has been used for code version 
control, however it is not efficient in tracking large binary 
data. Leveraging Git and git-annex (https://git​-annex​
.branchable​.com/), DataLad (https://www​.datalad​.org/; 
Halchenko et al., 2021) provides version control for data, 
even large binary files like neuroimaging data (e.g., in NIfTI 
format). The use of DataLad for large-scale reproducible 
image processing was introduced in the FAIRly big frame-
work (Wagner et  al., 2022). FAIR refers to findability, 
accessibility, interoperability, and reusability (Wilkinson 
et al., 2016). FAIRly big is a DataLad-based framework for 
reproducible processing of large-scale datasets (Wagner 
et al., 2022). DataLad and the FAIRly big framework cap-
ture provenance records of data processing, for example, 
who applied which commands and code upon which 
input data to generate which output data. Such detailed 
records can be used for re-execution of the data process-
ing and also provide a full audit trail (Wagner et al., 2022).

Although the FAIRly big framework paves the way for 
reproducible analysis at scale, its current implementation 
remains challenging. It requires investigators to write 
scripts for running the entire procedure; these scripts 
involve numerous steps and substantial proficiency with 
DataLad. This can be quite challenging for beginners—
and is often hard to debug even for experienced users. In 
addition, these scripts also need to be customized for spe-
cific use cases. For example, the input datasets can 

its scalability, we applied BABS to data from the Healthy Brain Network (HBN; n = 2,565). Taken together, BABS 
allows reproducible and scalable image processing and is broadly extensible via an open-source development model.
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include different data modalities (e.g., structural MRI, func-
tional MRI, diffusion MRI); can be cross-sectional (single-
session) studies or longitudinal (multiple-session) studies; 
and can be raw BIDS data or BIDS derivatives (e.g., 
fMRIPrep results). Furthermore, differences in the cluster 
systems also need to be accounted for. Different HPC job 
scheduling systems such as Sun Grid Engine (SGE) and 
Slurm often have different commands even for the similar 
functionality such as job submissions and status check-
ing. One straightforward way to implement the FAIRly big 
framework is to write one script per use case, where input 
dataset, BIDS App, and cluster system are fixed. However, 
this approach results in a profusion of “one-off” programs 
due to the many combinations of various input dataset 
types, BIDS Apps, and different cluster systems.

To address these challenges, we introduce BIDS App 
Bootstrap (BABS; http://pennlinc​-babs​.readthedocs​.io/), 
a user-friendly and generalizable Python package for 
reproducible image processing at scale. Capitalizing on 
standard formats of neuroimaging data and containerized 
software, BABS takes BIDS datasets as input and applies 
BIDS Apps. The robustness of the BIDS App framework 
to data heterogeneity also facilitates the generalization of 
BABS to complex and large datasets. BABS automatically 
generates all code for data processing based on users’ 
customization, and records the full audit trail in a scalable 
way by leveraging DataLad and the FAIRly big framework. 
BABS’s automation and generalizability to different use 
cases are similar to those seen in BIDS Apps such as 
fMRIPrep and QSIPrep, which wrap up the entire prepro-
cessing workflow and are generalizable to large, diverse 
neuroimaging datasets. With a parsimonious set of pro-
grams, BABS supports user-friendly job submissions and 
auditing on SGE and Slurm HPC clusters. As described 
below, BABS facilitates reproducible, generalizable, and 
scalable processing of BIDS datasets.

2.  MATERIALS AND METHODS

2.1.  Overview

BABS is a Python package for the reproducible applica-
tion of BIDS Apps. It leverages DataLad and the FAIRly 
big framework to provide a full audit trail for the process-
ing of large-scale datasets. It automatically “bootstraps” 
the need to execute the FAIRly big workflow: BABS gen-
erates all code for data processing and version tracking 
with DataLad. As part of this process, BABS interacts 
with HPC systems (e.g., SGE, Slurm) for submitting and 
auditing jobs. The entire BABS workflow can be com-

pleted with a parsimonious set of command-line pro-
grams.

2.2.  Data provenance tracking via DataLad

BABS leverages DataLad (Halchenko et  al., 2021) for 
data provenance tracking. Much like Git (https://git​-scm​
.com/) provides version control for code, DataLad pro-
vides version control for data by building upon the func-
tionality of Git and git-annex (https://git​-annex​.branchable​
.com/). Instead of directly tracking the file contents, Dat-
aLad tracks the “checksum” of the file content, a short, 
fixed-length hexadecimal number (e.g., 32 digits for MD5 
checksum) representing the file content. This checksum 
can be used to verify the file content and check any 
changes in the file, as even a single byte change of the 
file’s content would result in a change of the checksum. 
Tracking this checksum is much cheaper than tracking 
the file content directly. Therefore, DataLad is capable of 
handling large files commonly seen in neuroimaging 
datasets. A DataLad dataset is a Git repository with a 
unique Universally Unique Identifier (UUID) and is des-
tined for managing and tracking data if git-annex is 
enabled for that repository. As every change to the data-
set can be recorded as a separate commit with compre-
hensive metadata, the `datalad run` command can 
be used to save changes to the dataset as a result of the 
execution of any command, while recording the com-
mand within the Git commit associated with that change. 
Based on these, DataLad provides machine-readable, re-
executable provenance records. The version-controlled 
DataLad dataset can also be cloned to another place for 
reuse or distribution. We refer the reader to the DataLad 
Handbook (http://handbook​.datalad​.org/; Wagner et al., 
2023) to discover more about DataLad functionality and 
the larger ecosystem of extensions.

2.3.  BABS workflow

BABS builds upon the workflow of the FAIRly big frame-
work (see Fig. 1), and can be used on HPC clusters. Here, 
HPC clusters are computing resources that include mul-
tiple connected servers, or “compute nodes.” HPC clus-
ters utilize job scheduling systems to manage jobs 
running on different compute nodes. Thus, many jobs 
can be run in parallel on different compute nodes, making 
HPC clusters powerful tools for large-scale data process-
ing. BABS supports SGE and Slurm, which are two of the 
most popular HPC job scheduling systems. BABS allo-
cates the image processing for each subject (or session) 
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into a “job” on HPC clusters. In this paper, we will follow 
the common principles in BIDS format and use the term 
“subject” to refer to a participant. The scope of a job is at 
subject-level for single-session dataset and at session-
level for multiple-session dataset. For simplicity, in this 
paper, we may use “a specific session” to refer to “a spe-
cific session within a subject.” For each job, the input 
data from the corresponding subject (or session) will be 
cloned from the input Remote Indexed Archive (RIA) to an 
ephemeral (temporary) compute workspace. A RIA store 
is a permanent store, for example, some storage space 
on HPC clusters. The input data are then processed by a 
BIDS App on a cluster compute node. The parameters for 
executing the BIDS App are predefined by the user in a 
YAML file; this will be explained in the next section “2.4. 
BABS programs,” as well as in the Results section with 
example YAML files. During the job run, all provenance is 
tracked by DataLad, including code (e.g., exact Singular-
ity run command), input BIDS dataset(s), the BIDS App 
and its version, and the results. At the end of the job run, 
zipped results and the provenance are pushed to the out-
put RIA store as a new branch. Zipping results from each 
job is to reduce the possibility of conflicts when merging 
in the next step, as well as to reduce the inode usage on 
the filesystem. Processing for all subjects (or sessions) is 
parallelized. After all jobs are completed, results and 
provenance of successful jobs are merged and readily 

available in the output RIA store. Note that all the code for 
data processing and provenance tracking is automati-
cally generated and internally executed—that is, “boot-
strapped”—by BABS.

2.4.  BABS programs

To achieve steps in the BABS workflow, BABS features 
several command-line interface programs (Fig. 2). These 
programs can be run in a terminal connected to an HPC 
cluster. Detailed descriptions of how to use these pro-
grams can be found in the online documentation: https://
pennlinc​-babs​.readthedocs​.io​/en​/stable​/cli​.html.

BABS requires three inputs: (a) one or more BIDS Dat-
aLad datasets, (b) a DataLad dataset of containerized 
BIDS App, and (c) a container configuration YAML file. 
Instead of directly using BIDS datasets or BIDS App 
images, we require them to be tracked by DataLad, that 
is, as “DataLad datasets,” so that these two inputs to 
BABS come with their version history. DataLad datasets 
of BIDS and containerized BIDS App can also be easily 
cloned by BABS. Here, a “container DataLad dataset” 
means a collection of container images in a folder 
tracked by DataLad. As the content is a set of container 
images, it contains software that is used in the image 
processing workflow. It should be noted that BABS also 
supports input BIDS DataLad datasets that are remote, 

Fig. 1.  Schematic of the BABS workflow. For a job of a subject (single-session dataset) or a session (multiple-session 
dataset), the subject- (or session-) specific data are cloned from the permanent store—the input Remote Indexed Archive 
(RIA) store—to an ephemeral compute workspace, along with the containerized BIDS App and code for executing the BIDS 
App (left of the figure). The job will be completed at a cluster compute node. Jobs of all subjects (or sessions) are iteratively 
submitted to the compute nodes and computed in parallel (the entire box). Results from each job are zipped and pushed to 
the output RIA store as a separate branch (right of the figure). After all jobs have finished, results from all successful jobs are 
merged. The full audit trail of the successful jobs is also saved in the output RIA store (top of the figure).

https://pennlinc-babs.readthedocs.io/en/stable/cli.html
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for example, on OSF (e.g., see “3.2. Example walk-
through” in the Results section), or on some local serv-
ers to which HPC compute nodes have access. If the 
HPC compute nodes have access to the remote file sys-
tem or the internet, users can simply provide the path to 
the remote BIDS DataLad dataset (including those in 
remote RIA stores) as the input to BABS. In this case, 
users do not need to download all the data content into 
the permanent disk space of HPC clusters before run-
ning BABS. Instead, when jobs are running on compute 
nodes, the scripts generated by BABS will utilize Data-
Lad programs and automatically download the data con-
tent needed for each job into the ephemeral (temporary) 
compute workspace.

The last required input, a container configuration 
YAML file, is used to define how the BIDS App should be 
executed. Example YAML files are shown in Figures 3A 
and 4. This YAML file is designed to be abstracted from 
the specifics of different cluster system types (e.g., SGE, 
Slurm). For example, there are several commonly used 
directive commands for requesting cluster resources in 
SGE and Slurm. Although they have similar goals (e.g., 
requesting memory), the commands are different in SGE 
and Slurm clusters. To reduce the differences in YAML 
files for different clusters, several commonly used direc-
tive commands that share similar functions on SGE and 
Slurm have been abstracted into keywords, for example, 
hard_memory_limit (see below: line #14 in Fig.  3A; 

Fig. 2.  BABS user-oriented workflow (top figure) and descriptions of BABS programs (bottom table).
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line #22 in Fig. 4). Most of these keywords can be used for 
both SGE and Slurm clusters without further changes. This 
facilitates the reuse of YAML files on another cluster with 
only minor changes. It should be noted that it is unavoid-
able that differences between specific HPC clusters will 
require some minor customizations of the YAML files, for 
example, how the execution environment is configured. We 
provide some examples on how to customize the YAML 
files in the “3.2. Example walkthrough” in the Results sec-
tion. More details can be found in BABS documentation: 
https://pennlinc​-babs​.readthedocs​.io​/en​/stable​
/preparation​_config​_yaml​_file​.html.

With these three required inputs, babs-init initial-
izes a BABS project, a folder that will hold input data, 
container, code, and results. A BABS project can be 
located in the storage space of a cluster. An example 
folder structure of a BABS project is shown in Figure 3C. 
babs-init creates an analysis folder within this BABS 
project, and clones the input BIDS DataLad dataset(s) 
and the container DataLad dataset into this analysis 
folder. In addition, it generates the code to be used inter-
nally, including code for executing the desired BIDS App 
and DataLad version control. Importantly, this analysis 
folder is itself a DataLad dataset whose nested  
content—including data and code—is tracked by Data-
Lad. Additionally, babs-init creates input and output 
RIA stores as the DataLad siblings (“copies”) of analysis 
DataLad dataset. babs-init also determines the list of 
the subjects (or sessions) to analyze based on an initial 
inclusion list optionally provided by the user (argument 
--­list-­sub-­file). This list can be further filtered by 
excluding those subjects (or sessions) that do not have 
required files optionally defined in the container configu-
ration YAML file.

After initializing a BABS project, babs-check-setup 
will be used to confirm this BABS project has been set up 
properly. Specifically, it will perform sanity checks of the 
components of this BABS project, for example, if all nec-
essary scripts have been generated, if input datasets 
have been successfully cloned, etc. We highly recom-
mend users submit a toy job using argument --job-test 

to make sure necessary packages (e.g., DataLad) are 
installed in the designated environment, and that setup 
specified in the container configuration YAML file (e.g., 
section script_preamble) is working as expected. 
babs-check-setup can be also used as a diagnostic 
tool, as it prints out information for users to review, includ-
ing configurations of the BABS project (e.g., input BIDS 
dataset’s name and path) and versions of necessary 
packages in the designated environment. This information 
is also helpful for submitting bug reports if issues arise.

Once the setup is complete, the BABS project is ready 
for job submitting and status monitoring via babs-
submit and babs-status. These two programs inter-
act with the cluster’s job scheduling system and can be 
used iteratively. Each job of data processing operates on 
a specific subject or a specific session. babs-submit 
provides several submission options, including submitting 
specific subjects’ (or sessions’) jobs, submitting a specific 
number of jobs, and submitting all the remaining jobs.

babs-status can be used to check job status. The job 
status of a subject or a session can be one of these cate-
gories: (a) the job has not been submitted yet; (b) the job 
has been submitted but is waiting in the queue (“pending”); 
(c) the job has been submitted and is running on a compute 
node; (d) the job has successfully finished; and (e) the job 
failed with an error. babs-status will check job statuses 
from all subjects (or sessions) and print out a summary 
containing the number of jobs in each category. In addition, 
babs-status can also perform auditing on failed jobs to 
provide more information regarding why those jobs were 
failed. Finally, babs-status can also be used to resubmit 
failed or pending jobs. Options include resubmitting spe-
cific subjects’ (or sessions’) jobs, and resubmitting all of 
failed or pending jobs. Note that although the processing of 
a subject’s (or session’s) images can be resubmitted using 
babs-status, at any given time, there should be only one 
job submitted and under “running” or “pending” for a spe-
cific subject (or session).

Results from each job are compressed (“zipped”) and 
are kept in a separate branch. After all jobs are finished, 
babs-merge can be used to merge all the results and 

Fig. 3.  Materials used and generated in the example walkthrough of BABS. (A) Example YAML file for toy BIDS App. 
This YAML file was prepared for Penn Medicine CUBIC SGE cluster; however, with some customization (highlighted lines) 
based on the clusters users are using, this YAML file can also be applied to other clusters, even for a Slurm cluster. (B) 
Example babs-init command. The highlighted line requires customization. (C) The folder structure of the BABS project. 
Note that after babs-merge is applied, there will be a new folder merge_ds in parallel with other main folders (e.g., 
analysis) in the BABS project. (D) Generated Singularity run command based on the YAML file in panel A. (E) Part of 
printed messages from babs-check-setup, which provides information of designated environment and temporary job 
compute space. (F) After all jobs have finished, the list of files and folders inside the cloned output RIA store.

https://pennlinc-babs.readthedocs.io/en/stable/preparation_config_yaml_file.html
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provenance from successfully finished jobs into the 
mainline branch in the output RIA. After merging, results 
are ready to consume. Users can use DataLad com-
mands to clone the output RIA, get the results content, 
and unzip the results.

2.5.  Open-source software development and release

The source code of BABS is version controlled and pub-
licly available on GitHub (https://github​.com​/PennLINC​
/babs). We have been using CircleCI to run tests and 
make releases. Specifically, each new commit pushed to 
GitHub triggers CircleCI jobs to run the BABS’s unit tests. 

This helps ensure the quality and stability of BABS after 
each commit. When a version tag is pushed to GitHub, a 
new version of the Python package of BABS will be auto-
matically built by CircleCI jobs and publicly released on 
the Python Package Index (PyPI): https://pypi​.org​/project​
/babs/.

2.6.  Ethics statement

No new data were collected specifically for this paper. 
The Healthy Brain Network (HBN; Alexander et al., 2017) 
study was approved by the Chesapeake Institutional 
Review Board. Informed consent was obtained from each 

Fig. 4.  Container configuration YAML file used in application of BABS to the HBN dataset.

https://github.com/PennLINC/babs
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participant aged 18 or older. For participants younger 
than 18, written consent was obtained from their legal 
guardians and written assent was obtained from the par-
ticipant. In addition, during the consent process, all par-
ticipants provide informed consent for their data to be 
shared via IRB approved protocols.

3.  RESULTS

3.1.  Example use cases

BABS is designed to process large BIDS datasets with 
BIDS Apps on HPC clusters with job scheduling systems. 
Currently, BABS supports two popular HPC job schedul-
ing systems, SGE and Slurm. The major differences 
between job scheduling systems lie in different com-
mands for how the jobs are managed, for example, in job 
submissions, status checking, etc. BABS generates and 
uses different code and commands of job managements 
tailored for different job scheduling systems.

BABS can be used to process data with BIDS Apps. 
Thus far, BABS has been used to process data using 
fMRIPrep (https://github​.com​/nipreps​/fmriprep; Esteban 
et al., 2019, 2020), QSIPrep (https://github​.com​/PennLINC​
/qsiprep; Cieslak et al., 2021), and XCP-D (https://github​
.com​/PennLINC​/xcp​_d; Ciric et al., 2018) (Table 1). Besides 
the BIDS Apps listed in Table 1, we also provide a toy BIDS 
App for quickly testing BABS (https://hub​.docker​.com​/r​
/pennlinc​/toy​_bids​_app). This toy BIDS App will be used in 
the example walkthrough (see below).

BABS accepts different input BIDS datasets, including 
raw BIDS datasets, or BIDS derivatives datasets. The lat-
ter case often includes results from another BIDS App, for 
example, FreeSurfer results from fMRIPrep anatomical 
workflow. When using such BIDS derivatives as input 
datasets, currently BABS expects that the results of each 
subject (or session) are zipped. This is to facilitate the 
reuse of the BABS results in zipped format as an input 
dataset for another BABS project. Therefore, we also refer 
to it as a “zipped BIDS derivatives dataset.” BABS also 

allows more than one input BIDS dataset. An example use 
case would be applying the fMRIPrep BOLD preprocess-
ing workflow upon functional MRI data from a raw BIDS 
dataset, with another input BIDS derivatives dataset, 
FreeSurfer results, ingressed (Table  1, the second use 
case). For use cases listed in Table 1, we have provided 
example container configuration files available in BABS 
GitHub repository. Please refer to this markdown file for 
the list of available files and their links: https://github​.com​
/PennLINC​/babs​/blob​/main​/notebooks​/README​.md.

Beyond the existing tested applications in Table  1, 
BABS can be used to process data with most BIDS Apps 
after users create new container configuration YAML files 
for these BIDS Apps accordingly. Furthermore, BABS can 
be extended to be used with other scheduling systems 
(e.g., LSF) that are not yet supported. We welcome 
enhancements from the user community via new pull 
requests at the BABS GitHub repository (https://github​
.com​/PennLINC​/babs). Below, we demonstrate the use of 
BABS first via a detailed walkthrough using a toy exam-
ple. Second, we illustrate its application to a large-scale 
dataset (the structural data of the Healthy Brain Network).

3.2.  Example walkthrough

To demonstrate an example usage of BABS, we provide 
an example walkthrough where a toy BIDS dataset and 
toy BIDS App are used. The example walkthrough is also 
available as online documentation: https://pennlinc​-babs​
.readthedocs​.io​/en​/stable​/walkthrough​.html, where more 
details are provided. We recommend referring to the 
online version of this example walkthrough and copying 
and pasting the commands from there to ensure use of 
the most current version and to allow for tighter control 
over command text formatting (compared to a journal 
publication). As detailed below, there are four major steps 
in this example walkthrough: (1) Get prepared; (2) Create 
a BABS project; (3) Submit jobs and check job status; 
and (4) After jobs have finished.

Table 1.  Example use cases of BABS.

# Use cases / BIDS Apps 1st input BIDS dataset 2nd input BIDS dataset

1 fMRIPrep (for fMRI) Raw BIDS (unzipped) N/A
2 fMRIPrep (with FreeSurfer results  

ingressed)
Raw BIDS (unzipped) FreeSurfer results (BIDS 

derivatives, zipped)
3 QSIPrep (for dMRI) Raw BIDS (unzipped) N/A
4 XCP-D (for fMRI) fMRIPrep results (BIDS  

derivatives, zipped)
N/A

fMRI, functional MRI; dMRI, diffusion MRI.

https://github.com/nipreps/fmriprep
https://github.com/PennLINC/qsiprep
https://github.com/PennLINC/qsiprep
https://github.com/PennLINC/xcp_d
https://github.com/PennLINC/xcp_d
https://hub.docker.com/r/pennlinc/toy_bids_app
https://hub.docker.com/r/pennlinc/toy_bids_app
https://github.com/PennLINC/babs/blob/main/notebooks/README.md
https://github.com/PennLINC/babs/blob/main/notebooks/README.md
https://github.com/PennLINC/babs
https://github.com/PennLINC/babs
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
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Step 1. Get prepared. We first install BABS and depen-
dent packages in a conda environment called babs.  
The installation steps have been detailed in our online  
documentation: https://pennlinc​-babs​.readthedocs​.io​/en​
/stable​/installation​.html. Note that besides the required 
dependencies like DataLad, Git, git-annex, and datalad-
container, we also installed datalad-osf Python package 
so that we can use a toy BIDS dataset available on OSF as 
input. We used BABS version 0.0.3 to prepare this exam-
ple walkthrough. As there would be more enhancements in 
BABS in future releases that might potentially alter the 
commands or steps here, we encourage users to use the 
latest BABS version available on PyPI and the latest stable 
version of walkthrough available online (https://pennlinc​
-babs​.readthedocs​.io​/en​/stable​/walkthrough​.html).

We first create a folder called babs_demo in the root 
directory as the working directory in this example walk-
through:

conda activate babs
mkdir -p ~/babs_demo
cd babs_demo

Now, we need to prepare three inputs required by 
BABS: an input BIDS DataLad dataset, a DataLad data-
set of containerized BIDS App (“container DataLad data-
set”), and a container configuration YAML file. For the 
input BIDS DataLad dataset, we can use a toy, multiple-
session BIDS DataLad dataset publicly available on OSF: 
https://osf​.io​/w2nu3/. In this BIDS dataset, there are two 
subjects, each with three sessions. As long as the com-
pute nodes of the HPC cluster are connected to the inter-
net, the OSF link of this dataset can be directly copied as 
the path to the input BIDS DataLad dataset when running 
babs-init, and BABS will download all necessary files. 
For compute nodes without internet access, please refer 
to the online version of the walkthrough: https://pennlinc​
-babs​.readthedocs​.io​/en​/stable​/walkthrough​.html.

For the BIDS App, we will use the toy BIDS App in this 
example walkthrough to allow for very rapid execution of 
the jobs. For a raw BIDS dataset like the one we will use 
in this walkthrough, this toy BIDS App performs a simple 
task when used with BABS: it will count non-hidden files 
in a subject’s folder. Its Docker image is publicly available 
on Docker Hub: https://hub​.docker​.com​/r​/pennlinc​/toy​
_bids​_app. To prepare its container DataLad dataset, we 
first pull toy BIDS App (version 0.0.7) as a Singularity 
image from the Docker Hub:

cd ~/babs_demo
singularity build \
    toybidsapp-0.0.7.sif \
    docker://pennlinc/toy_bids_app:0.0.7

Now we can see the Singularity image file 
toybidsapp-0.0.7.sif in the current directory. We 
then create a DataLad dataset of this container (i.e., let 
DataLad track this Singularity image):

datalad create -D "toy BIDS App" 
toybidsapp-container

cd toybidsapp-container
datalad containers-add \
--url ${PWD}/../toybidsapp-0.0.7.sif \
toybidsapp-0-0-7

Now, the DataLad dataset toybidsapp-container 
which contains the toy BIDS App container is ready to 
use. As the Singularity image file has been copied into 
toybidsapp-container, we can remove the original 
Singularity image file:

cd ..
rm toybidsapp-0.0.7.sif

Finally, we need to prepare a YAML file that instructs 
BABS for how to run the BIDS App. Figure 3A shows an 
example YAML file for toy BIDS App, and we will use it in 
this example walkthrough. Note that this YAML file was 
prepared for Penn Medicine CUBIC SGE cluster; how-
ever, this YAML file can also be applied to other clusters 
(including Slurm clusters) after some customization (high-
lighted lines).

There are several sections in this YAML file. The first 
section singularity_run defines the arguments and 
their values for running the BIDS App (line #2-5, Fig. 3A). 
The argument --no-zipped tells the toy BIDS App that 
the input dataset is unzipped, raw BIDS dataset. The 
other two arguments, --dummy and -v are both exam-
ples of what an argument could look like, where argu-
ment --dummy can take any value afterwards, and 
argument -v does not take values.

The next section, zip_foldernames, is about the 
results zip files (line #8-9, Fig.  3A). As the results from 
each subject (or each session) will be zipped, here we tell 
BABS the name(s) of the output folder(s) to be zipped is 
toybidsapp. In addition, we also provide the version of 
this toy BIDS App, 0-0-7, so that it can be added to the 
zip filenames. This will result in the zip filenames being 
named according to the convention of sub-01_ses-A_
toybidsapp-0-0-7.zip for subject 01 (sub-01) and 
session A (ses-A).

The third section, cluster_resources (line #12-14, 
Fig. 3A), defines cluster resource requirements such as 
the memory requirement (line #14, Fig.  3A) using 
scheduler-agnostic keywords. The interpreting shell to be 
used in the job script (line #13, Fig. 3A) is also defined in 

https://pennlinc-babs.readthedocs.io/en/stable/installation.html
https://pennlinc-babs.readthedocs.io/en/stable/installation.html
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://osf.io/w2nu3/
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://hub.docker.com/r/pennlinc/toy_bids_app
https://hub.docker.com/r/pennlinc/toy_bids_app
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this section. These items will be converted to scheduler-
specific directives in the job script.

There are inevitable idiosyncrasies across clusters; 
thus, this section often requires customization by users for 
their clusters. For the line of interpreting_shell, 
some Slurm clusters might suggest users to use `inter-
preting_shell: "/bin/bash -l"` instead; however, 
users should consult their clusters’ documentation and 
administrator. Customized commands can also be added 
after customized_text, without using the predefined 
cluster resources keywords in BABS. For example, for 
Slurm clusters, users may request specific partition(s) via:

cluster_resources:
…
customized_text: |

#SBATCH -p <partition_names>

The fourth section, script_preamble (line #17-18, 
Fig.  3A), defines commands that should be run before 
data processing starts. It could include commands for 
setting up the virtual environment (line #18, Fig. 3A), for 
loading necessary modules, etc. For example, if needed, 
please load the module of Singularity or one of its suc-
cessors (i.e., SingularityCE or Apptainer which BABS cur-
rently supports). Because each cluster may be configured 
differently, this section often requires customization.

The final section in this YAML file is called job_ 
compute_space (line #21, Fig.  3A). This is to set the 
location of the compute space where the jobs will run. As 
results will be saved to the permanent storage space out-
put RIA, we recommend using a temporary space here, 
such as space on the compute node, to avoid risk of 
accumulating unnecessary data from failed jobs which 
takes up space. The path "${CBICA_TMPDIR}" in line 
#21 in Figure 3A was specifically used for Penn Medicine 
CUBIC cluster, and other clusters will likely have different 
paths to the temporary compute space, so customization 
is needed here.

Once the user has finished inputting all necessary  
customization, we save the YAML file as file config_ 
toybidsapp_demo.yaml into directory ~/babs_demo. 
Note that currently this directory also includes the con-
tainer DataLad dataset toybidsapp-container.

Step 2. Create a BABS project. With all three inputs 
ready, we can now start to use BABS for data analysis. We 
first use babs-init to create a BABS project. This is a 
folder where input DataLad datasets of BIDS dataset(s) 
and the containerized BIDS App are cloned to, all scripts 
are generated, and results and provenance are saved. Fig-
ure 3B shows an example command of babs-init. With 
this example command, we create a BABS project called 

my_BABS_project (line #4, Fig.  3B) in directory  
~/babs_demo. We call the input dataset as BIDS, and we 
provide the OSF link as its path (line #5, Fig. 3B). For the 
container and its execution, we use the container DataLad 
dataset toybidsapp-container and the YAML file we 
just prepared (line #6-8, Fig. 3B). We make sure that the 
string toybidsapp-0-0-7 used in --container_name 
(line #7, Fig.  3B) is consistent with the image name we 
specified when preparing toybidsapp-container. As 
this input BIDS dataset is a multiple-session dataset, we 
specify this as `--type_session multi-ses` (line #9, 
Fig. 3B). Finally, because we will run this on an SGE clus-
ter, we specify the cluster system type as `--type_ 
system sge` (highlighted line #10, Fig. 3B). If a Slurm 
cluster is used, a user would change line #10 to ̀ --type_
system slurm`. After running this babs-init com-
mand, we see this message at the end, indicating the 
success: “`babs-init` was successful!”.

At this point, a folder named my_BABS_project has 
been generated in the directory ~/babs_demo. Its folder 
structure is shown in Figure 3C. This folder includes three 
sub-folders, analysis, input_ria, and output_ 
ria. The folder analysis is also a DataLad dataset 
which includes the cloned inputs (input BIDS DataLad 
dataset and container DataLad dataset), and generated 
scripts. The folders input_ria and output_ria are 
the input and output RIA stores, respectively, and they 
are DataLad siblings of analysis. When jobs are run-
ning, inputs are cloned from input RIA store, and results 
and provenance will be pushed to output RIA store.

It is very important to check two things in the gener-
ated code. The first is the Singularity run command for 
running the BIDS App. This command has been printed 
out by babs-init (see Fig. 3D). As you can see, the 
arguments and their values specified in the singularity 
_run section in YAML file (line #2-5, Fig. 3A) have been 
added to the generated Singularity run command 
(Fig. 3D). BABS has also automatically handled the posi-
tional arguments of the BIDS App, including input direc-
tory, output directory, and analysis level ('participant'). 
The --participant-label parameter is also covered 
by BABS.

The second thing to check is the generated directives 
in the job script. These directives are in the header lines 
of the script. We get them via:

cd ~/babs_demo/my_BABS_project
head analysis/code/participant_job.sh

The first several lines starting with `#` and before  
the line `# Script preambles:` are the generated 
directives. Using the YAML file above without further 
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modifications, for BABS version > 0.0.3 applied on an 
SGE cluster, we will see these directives:

#!/bin/bash
#$ -l h_vmem=2G

and on an Slurm cluster: 
#!/bin/bash
#SBATCH --mem=2G

It is also important to let BABS check to be sure that 
the project has been initialized correctly before attempt-
ing to run many data processing jobs. One should run a 
test job to make sure that the environment and cluster 
resources specified in the YAML file are workable. We  
use babs-check-setup to do so. Note that the follow-
ing BABS commands will be called from where the BABS 
project is located, ~/babs_demo/my_BABS_project. 
After switching to this directory, we can use ${PWD} for 
argument --project-root in BABS commands.

cd ~/babs_demo/my_BABS_project
babs-check-setup \
--project-root ${PWD} \
--job-test

Because we ask babs-check-setup to submit a 
test job, it might take a bit of time for the above com-
mand to finish, depending on how busy the cluster is. 
After running babs-check-setup, we see this message 
at the end, indicating the success: “`babs-check-
setup` was successful!”.

Before moving on, we review the summarized informa-
tion of the designated environment and temporary com-
pute space where the jobs will run. This summarized 
information has been printed out by babs-check-
setup (see Fig. 3E). We confirm that the temporary com-
pute space is writable (‘true’), the Python interpreter is 
what we desire, and the required packages have been 
installed, and their version numbers are appropriate.

If babs-init succeeded, but running babs-check-
setup with a test job fails, or the summarized informa-
tion from babs-check-setup is not what we desire, 
currently we recommend removing the BABS project, 
fixing the problems (e.g., in the babs-init command, or 
in the YAML file), and generating a new BABS project 
using babs-init. Detailed instructions can be found in 
the online documentation: https://pennlinc​-babs​.read 
thedocs​.io​/en​/stable​/babs​-check​-setup​.html.

Step 3. Submit jobs and check job status. We will 
iteratively use babs-submit and babs-status to sub-
mit jobs and check job status. We first use babs-status 
to check the number of jobs we initially expect to finish 
successfully. In this example walkthrough, as no initial list 

was provided, BABS determines this number based on the 
number of sessions in the input BIDS dataset. We did not 
request extra filtering (based on required files) in our YAML 
file either, so BABS will submit one job for each session.

cd ~/babs_demo/my_BABS_project
babs-status --project-root $PWD

Printed messages from babs-status tell us that 
“There are in total of 6 jobs to complete”.

We now use babs-submit to submit one job and see 
if it will finish successfully. By default, babs-submit will 
only submit one job.

babs-submit --project-root $PWD

Now, the job for the first session, sub-01/ses-A has 
been submitted. We can check the job status via babs-
status:

babs-status --project-root $PWD

If this first job finished successfully, the printed mes-
sages from babs-status will tell us that “1 job(s) 
are successfully finished”.

Now, we submit all other jobs by specifying --all:

babs-submit --project-root $PWD --all

We can again call ̀ babs-status --project-root 
$PWD` to check status. babs-status will tell us the 
number of jobs submitted, finished, pending, running, or 
failed. If all jobs have finished successfully, we will see 
printed messages: “6 job(s) are successfully 
finished” and “All jobs are completed!”.

Step 4. After jobs have finished. After all jobs have 
finished successfully, we will merge all the results and 
provenance. Each job was executed on a different 
branch, so we must merge them together into the main-
line branch. We now run babs-merge in the root direc-
tory of my_BABS_project:

babs-merge --project-root $PWD

After this command finishes running, we see “`babs-
merge` was successful!” at the end of the printed 
messages. Now we are ready to consume the results.

To consume the results, we should not access the out-
put RIA store or merge_ds directories inside the BABS 
project. Instead, we will clone the output RIA as another 
folder (e.g., called my_BABS_project_outputs) to a 
location external to the BABS project:

cd ..
datalad clone \
ria+file://${PWD}/my_BABS_project/ 
output_ria#~data \
my_BABS_project_outputs

https://pennlinc-babs.readthedocs.io/en/stable/babs-check-setup.html
https://pennlinc-babs.readthedocs.io/en/stable/babs-check-setup.html
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The first command, `cd ..` changes the directory 
back to folder babs_demo, where my_BABS_project 
locates. After running above commands, we then go into 
this new folder my_BABS_project_outputs and see 
what is inside:

cd my_BABS_project_outputs
ls

The content in this folder is shown in Figure 3F. As we 
see, results of each session have been saved in a zip file. 
Before unzipping a zip file, for example, the zip file for 
sub-01/ses-A, we need to get its content first:

datalad get sub-01_ses-A_toybidsapp-0-
0-7.zip
unzip sub-01_ses-A_toybidsapp-0-0-7.zip

From the zip file, we get a folder called toybidsapp. 
We check the content of this folder via:

cd toybidsapp
ls

In this folder, there is a file called num_nonhidden 
_files.txt. This is the result from the toy BIDS App, 
which is the number of non-hidden files in this subject’s 
data. Note that for raw BIDS dataset and when used with 
BABS, toy BIDS App counts at subject-level, even though 
current dataset is a multiple-session dataset. We print 
out the content of this text file:

cat num_nonhidden_files.txt

And the content should be “67”. “67” is the expected 
number for sub-01 (which we are looking at), “56” is the 
expected number for sub-02. Getting the expected num-
ber means that toy BIDS App and BABS ran as expected.

3.3.  Application to a large-scale dataset

Next, we applied BABS to the HBN dataset using the 
fMRIPrep anatomical workflow. As above, this was exe-
cuted on the Penn Medicine CUBIC SGE cluster. HBN is 
a single-session dataset, that is, each subject only has 
one session. We first prepared the input BIDS DataLad 
dataset, container DataLad dataset of fMRIPrep (Esteban 
et al., 2019; version 20.2.3), and container configuration 
YAML file (see Fig.  4). In this container configuration 
YAML file, we set the job run time limit of two days (line 
#24, Fig. 4), which is sufficient for fMRIPrep anatomical 
workflow. Jobs which could not finish within two days are 
probably stuck and should be killed by the cluster.

We first ran babs-init to initialize the BABS project. 
After it finished, we used babs-check-setup with 
--job-test mode on to make sure that the environ-

ment and cluster resources specified in the YAML file 
were workable. babs-check-setup command finished 
successfully, suggesting that real jobs of fMRIPrep were 
ready to submit.

Next, we used babs-status to check how many 
subjects’ jobs there are to complete. The list of subjects 
was generated during babs-init, where only subjects 
with T1-weighted images were included, and such data 
filtering was set on line #40-42 in the YAML file shown in  
Figure 4. There were 2,565 jobs to complete, where each 
job corresponds to a subject. We then submitted the first 
10 jobs using babs-submit with argument `--count 
10` to confirm real jobs could finish without error. After 
almost a day, all of these 10 jobs finished successfully 
according to babs-status. This told us that the requested 
cluster resources were sufficient for the real jobs.

We then submitted jobs for all of the remaining sub-
jects using babs-submit with argument --all. After 
that, we ran babs-status episodically to check job sta-
tus. Figure  5 shows example printed messages from 
babs-status during this process. The babs-status 
command is highlighted in blue. To audit the failed jobs, 
we used container configuration YAML file (line #3-4, 
Fig.  5) and turned on --job-account mode (line #5, 
Fig. 5). There were two major parts in the printed mes-
sages: the job status summary and the failed job audits. 
Based on the job status summary, at that point, all 2,565 
subjects’ jobs had been submitted (line #11, Fig.  5). 
Among them, 1,808 jobs successfully finished; 196 jobs 
were waiting in the queue (“pending”); 342 jobs were run-
ning; and 219 jobs failed (line #12-16, Fig. 5).

Next, to further understand why these jobs failed, and 
to audit how many jobs had failed due to each reason, 
babs-status performed failed job audits. It first 
searched for alert messages in log files of these failed 
jobs that were predefined in the container configuration 
YAML file (line #46-52, Fig.  4). These alert messages, 
such as “Excessive topologic defect encoun-
tered”, were messages that may be found in log files of 
failed jobs and may be informative for why a job had 
failed. babs-status identified two failed jobs that had 
alert message of “fMRIPrep failed” in standard out-
put (stdout) log file, 17 failed jobs with “Excessive 
topologic defect encountered”, two failed jobs 
with “Numerical result out of range”, and one 
failed job with “mris_curvature_stats: Could not 
open file” (line #19 and #21-23, Fig. 5).

Finally, there were 197 failed jobs without predefined 
alert messages in their log files (line #20, Fig. 5). This indi-
cates these jobs failed for reasons other than the ones 
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described above. With --job-account mode on, 
babs-status further called cluster’s job accounting 
command to diagnose the reason. All of these 197 failed 
jobs had failed code 37: “qmaster enforced h_rt, 
h_cpu, or h_vmem limit” (line #25-26, Fig. 5). This 
tells us that these jobs were killed by the cluster because 
they exceeded resource limits. As we have set job run 
time limit (h_rt) of two days in the container configura-
tion YAML file, these jobs likely failed because they did 
not finish within two days, indicating they got stuck at 
one step of the processing pipeline.

As failed job auditing was turned on (i.e.,  
--container-­config-­yaml-­file and --job-account), 
this example babs-status command at this point fin-
ished after around half an hour. Notably, without failed job 
auditing (using only the job status summary), babs-
status will only require one to two minutes even for a 
very large dataset like HBN. Note that the run time of a 
BABS command also depends on how busy the cluster 
is, so it is normal for the run time to vary.

After the first round of submissions of all subjects’ 
jobs, 2,231 jobs successfully finished, and 334 jobs 
failed. In a large dataset like HBN with heterogeneous 
data quality, it is expected that jobs failed due to issues 

such as failed surface reconstruction by FreeSurfer. 
Sometimes, rerunning the jobs may solve the problem. 
Therefore, we resubmitted these 334 failed jobs using 
babs-status with the argument `--resubmit 
failed`. In the end, a total of 2,258 subjects’ jobs suc-
cessfully finished, and 307 subjects’ jobs failed.

At this time, all successful jobs’ results were on differ-
ent branches. We applied babs-merge to merge them 
into the mainline branch, resulting in a complete, 
provenance-tracked DataLad dataset. The results were 
ready to consume. To check the results, we used Data-
Lad’s command `datalad clone` to clone the output 
RIA to a human readable folder outside the BABS project. 
After getting into this new folder, we could see 2,258 zip 
files, each containing results from one subject. By using 
`datalad get`, we copied the content of one zip file 
into the cloned folder. After unzipping this zip file, we suc-
cessfully got the expected results from the correspond-
ing subject.

To check the data provenance tracked by DataLad in 
this clone of the results, we used command `git log 
--oneline` to list the Git commit history of the entire 
workflow of BABS (Fig. 6A). We further entered the com-
mand `git show 09ce675` to check the provenance 

Fig. 5.  Example babs-status command (in blue) and corresponding printed messages during the application of BABS 
to the HBN dataset. The babs-status command was run in the root directory of the BABS project.
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record of the last job shown in the history: commit 
09ce675, for subject sub-NDARYT155NHX. This com-
mand printed out the machine-readable, re-executable 
provenance record of this subject’s data processing job, 
including the exact command used, input BIDS data and 
container image, results zip file, etc (Fig. 6B). With this 
provenance record and the code saved in the output RIA 
store, data processing of any job can be repeated, mak-
ing data processing fully reproducible. Here, we skip the 
demonstration of such recomputation, as this has been 
demonstrated in the FAIRly big framework paper (Wagner 
et al., 2022).

4.  DISCUSSION

BABS was developed to respond to the reproducibility 
crisis in neuroimaging research and maximize reproduc-

ibility in image processing. The full audit trail recorded by 
DataLad and FAIRly big framework provides complete 
reproducibility for processing large-scale datasets. As 
discussed below, BABS allows for reproducible and scal-
able applications of different BIDS Apps on HPC clusters 
that are accessible to general users.

4.1.  Reproducible data analyses

There have been emerging tools for enhancing reproduc-
ibility, for example, Git for code version control, DataLad 
for data version control, as well as containerized BIDS 
Apps that are portable and encapsulate all dependent 
software. However, neuroimaging data analyses often 
involve various components, including input datasets, 
software and code, commands and parameters, results, 
etc. A full audit trail of data processing is essential for 

Fig. 6.  Git log history and example data provenance of the application to the HBN dataset. (A) The Git log history of the 
entire workflow of BABS (only first several lines, i.e., last several commits are shown). (B) An example machine-readable, 
re-executable provenance record of a subject’s data processing job. 
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complete reproducibility; however, it is often painful to 
record a full audit trail for complex, heterogeneous, and 
large datasets. Leveraging DataLad and FAIRly big 
framework, BABS supports automatic data provenance 
tracking. This allows users to find detailed data prove-
nance records for results, even from a large-scale data-
set. Such detailed records link the results to all other 
components in neuroimaging data analyses by answer-
ing how the results were generated: which input datasets 
were used, what the exact code, commands, and version 
of the BIDS App were applied, etc. These detailed records 
can be retrospectively retrieved when reporting detailed 
methods or protocol of the study.

In addition, the results and the data provenance 
records can be shared after all of them are merged. This 
can be done by cloning and sharing the output RIA store 
of the BABS project, just like other DataLad datasets. For 
example, the list of files and their remote availability can 
be shared on GitHub; meanwhile, the data content can be 
shared on Amazon Web Services (AWS) or OSF platforms.

4.2.  Scalability to large-scale datasets

Compared to small datasets, large neuroimaging data-
sets produce more reproducible and replicable findings, 
especially in the context of the small effect size of many 
brain-behavior associations (e.g., Liu et al., 2023; Marek 
et  al., 2022). Large sample sizes enhance statistical 
power; however, their size, complexity, and heterogeneity 
also present challenges in data processing. The chal-
lenges include not only data provenance tracking (as dis-
cussed above), but also HPC job management. BABS is 
designed to scale for applications to large-scale datasets 
in an HPC environment. As shown in the application to 
the HBN dataset, babs-submit and babs-status pro-
vide simple yet powerful interfaces for users to manage 
numerous jobs, including job submission, status check-
ing, and auditing of failed job. These features facilitate its 
applications to large-scale datasets.

4.3.  Generalizability to different use cases

There are numerous use cases of neuroimaging data pro-
cessing, including different input BIDS datasets, BIDS 
Apps, and HPC cluster platforms. It is not efficient for 
researchers to implement one script per use case; the 
profusion of resulting code also has the potential to 
impact reproducibility. Instead, BABS creates (i.e., boot-
straps) scripts tailored for different use cases. In this way, 
maintenance and enhancements are only needed for the 

source code of BABS, instead of numerous scripts for 
different use cases. Currently, BABS supports several 
common use cases, including input BIDS datasets in dif-
ferent forms (one or more; single-session and multiple-
session; raw BIDS data and BIDS derivatives), several 
BIDS Apps (fMRIPrep, QSIPrep, and XCP-D), and SGE 
and Slurm HPC clusters. Applications to other BIDS Apps 
are straightforward and can easily be achieved by creat-
ing new container configuration YAML files for those 
BIDS Apps. BABS is also extensible to additional HPC 
job scheduling systems beyond Slurm and SGE; we have 
plans to support LSF in the future.

4.4.  User-friendly and accessible to general users

BABS provides a parsimonious set of programs for repro-
ducible image processing. With BABS, users can apply 
the FAIRly big framework and reproducibly process large 
datasets without requiring deep knowledge of DataLad, 
which many users find challenging. Sanity checks and 
test jobs included in babs-check-setup help users 
detect problems before real jobs of BIDS Apps start run-
ning and fail. Handling numerous jobs on clusters is facil-
itated by babs-submit and babs-status; these 
provide users with concise yet informative messages 
about the jobs statuses and failed jobs audits. As such, 
BABS makes the reproducible and large-scale image 
processing user-friendly and accessible to both begin-
ning and advanced users.

4.5.  Limitations and future directions

It should be noted that BABS has several limitations. 
First, BABS capitalizes on and supports the standard 
BIDS format and BIDS Apps, and is not currently com-
patible with data in other formats, or neuroimaging soft-
ware or containers that are not compliant with the 
requirements of BIDS Apps. However, BIDS data and 
BIDS Apps are in wide current use. Second, currently 
BABS is designed to be applied on HPC systems, and is 
not compatible with cloud-based computing platforms 
(e.g., AWS), local computers where a job scheduling sys-
tem or Singularity software is not installed, or computing 
nodes without job scheduling systems. Compatibility to 
these systems may be considered in the future. Third, 
BABS currently only has command-line interfaces and 
does not have a graphical user interface (GUI). However, 
users who use HPC clusters should have basic skills of 
using command-line programs in terminals. In addition, 
given that HPC clusters often have limited bandwidth for 
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graphical data transmission, GUI may not be an optimal 
choice for BABS.

BABS’s continued development is an ongoing, collab-
orative effort. In the future, several enhancements on the 
roadmap may be added to BABS. For example, currently 
the data from the input BIDS dataset(s) should be fixed 
for a certain BABS project. This may not be suitable for 
studies where data are still being collected. In the future, 
we may add functionality to BABS so that it can accept 
new subjects and/or sessions easily. Furthermore, the 
interfaces with some servers like XNAT (https://www​.xnat​
.org/; Marcus et al., 2007) have not been well tested or 
not fully supported yet. Such compatibility can be 
requested at BABS GitHub repository (https://github​
.com​/PennLINC​/babs). In addition, as listed in the NMIND 
checklist (see Supplementary Data; Kiar et  al., 2023), 
although BABS has achieved Silver or Bronze tiers for 
documentation, infrastructure, and testing according 
NMIND standards, there are still several features that 
remain un-implemented. We have listed these un-
implemented features and potential enhancements on 
the roadmap in a milestone on GitHub: https://github​
.com​/PennLINC​/babs​/milestone​/3. We welcome contri-
butions from researchers in the broad community via pull 
requests at BABS GitHub repository (https://github​.com​
/PennLINC​/babs); developer documentation can be 
found at: https://pennlinc​-babs​.readthedocs​.io​/en​/stable​
/developer​.html.

4.6.  Conclusion

BABS is a Python package that provides a reproducible 
and scalable workflow for large-scale BIDS data analysis 
using BIDS Apps. It provides a parsimonious set of user-
friendly programs to allow for the generalizable imple-
mentation of the FAIRly big workflow on HPC systems. 
Taken together, BABS facilitates reproducible neuroim-
aging research at scale.

Data and Code Availability

BABS documentation can be found at: http://pennlinc​
-babs​.readthedocs​.io/. Code for preparing application of 
BABS to the Healthy Brain Network (HBN) dataset is 
available at https://github​.com​/PennLINC​/babs​_paper. 
The source code of BABS is available at https://github​
.com​/PennLINC​/babs. The Python package of BABS can 
be downloaded from PyPI: https://pypi​.org​/project​
/babs/. The version of BABS used for preparing the 
example walkthrough and used in the application to the 

HBN dataset was 0.0.3. The container image of the toy 
BIDS App used in the example walkthrough is available 
on Docker Hub: https://hub​.docker​.com​/r​/pennlinc​/toy​
_bids​_app. The toy BIDS dataset used in the example 
walkthrough is available on OSF: https://osf​.io​/w2nu3/. 
Part of the HBN dataset is available on FCP-INDI (https://
fcp​-indi​.s3​.amazonaws​.com​/index​.html​#data​/Projects​
/HBN​/BIDS​_curated/) (Richie-Halford et al., 2022).
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