
© 2024 Massachusetts Institute of Technology.
Published under a Creative Commons Attribution 4.0
International (CC BY 4.0) license.

Imaging Neuroscience, Volume 2, 2024
https://doi.org/10.1162/imag_a_00074

Software Toolbox

A reproducible and generalizable software workflow for analysis
of large-scale neuroimaging data collections using BIDS Apps
Chenying Zhaoa,b,c,d, Dorota Jareckae, Sydney Covitza,b,d, Yibei Chene, Simon B. Eickhofff,g, Damien A. Fairh,i,j,
Alexandre R. Francok,l,m, Yaroslav O. Halchenkon, Timothy J. Hendricksonh,o, Felix Hoffstaedterf,g, Audrey Houghtonh,
Gregory Kiark, Austin Macdonaldn, Kahini Mehtaa,b,d, Michael P. Milhamk,l, Taylor Saloa,b,d, Michael Hankef,g,
Satrajit S. Ghoshe,p, Matthew Cieslaka,b,d,*, Theodore D. Satterthwaitea,b,d,q,*

aLifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, United States
bPenn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
cDepartment of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
dDepartment of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
eMcGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
fInstitute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
gInstitute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
hMasonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
iInstitute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, United States
jDepartment of Pediatrics, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, United States
kChild Mind Institute, New York, NY, United States
lCenter for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
mDepartment of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
nDepartment of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
oMinnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
pDepartment of Otolaryngology, Harvard Medical School, Boston, MA, United States
qCenter for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, United States

*Contributed equally as senior authors

Corresponding Author: Theodore D. Satterthwaite (sattertt@pennmedicine.upenn.edu)

ABSTRACT
Neuroimaging research faces a crisis of reproducibility. With massive sample sizes and greater data complexity, this
problem becomes more acute. Software that operates on imaging data defined using the Brain Imaging Data Struc-
ture (BIDS)—the BIDS App—has provided a substantial advance. However, even using BIDS Apps, a full audit trail of
data processing is a necessary prerequisite for fully reproducible research. Obtaining a faithful record of the audit trail
is challenging—especially for large datasets. Recently, the FAIRly big framework was introduced as a way to facilitate
reproducible processing of large-scale data by leveraging DataLad—a version control system for data management.
However, the current implementation of this framework was more of a proof of concept, and could not be immediately
reused by other investigators for different use cases. Here, we introduce the BIDS App Bootstrap (BABS), a user-
friendly and generalizable Python package for reproducible image processing at scale. BABS facilitates the reproduc-
ible application of BIDS Apps to large-scale datasets. Leveraging DataLad and the FAIRly big framework, BABS
tracks the full audit trail of data processing in a scalable way by automatically preparing all scripts necessary for data
processing and version tracking on high performance computing (HPC) systems. Currently, BABS supports jobs sub-
missions and audits on Sun Grid Engine (SGE) and Slurm HPCs with a parsimonious set of programs. To demonstrate

Received: 8 August 2023  Revision: 3 November 2023  Accepted: 21 November 2023  Available Online: 10 January 2024

https://doi.org/10.1162/imag_a_00074
https://crossmark.crossref.org/dialog/?doi=10.1162/imag_a_00074&domain=pdf&date_stamp=2024-01-25
mailto:sattertt@pennmedicine.upenn.edu

2

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

1.  INTRODUCTION

Lack of reproducibility in neuroscience—and neuroimag-
ing in particular—has frequently been categorized as a
“crisis.” While there are many facets to this crisis and
barriers to reproducibility, one major source is analytic
flexibility during image processing. Abundant analytic
tools provide much greater flexibility in image process-
ing. However, varying methods applied to the same data-
set may lead to divergent results and conclusions
(Botvinik-Nezer et al., 2020; Maier-Hein et al., 2017;
Poldrack et al., 2017). These problems grow more acute
as the size and complexity of imaging datasets increase.
Large imaging data resources enhance statistical power
(Button et al., 2013), and are often more diverse and rep-
resentative (Laird, 2021), resulting in more generalizable
findings. While there has been a well-motivated push to
create large imaging data resources, most academic
investigators who are end-users of these data resources
lack essential tools for conducting reproducible research
with large-scale imaging datasets. Here, we introduce a
user-friendly tool that facilitates fully reproducible pro-
cessing of large-scale neuroimaging datasets.

Recent progress in reproducibility has been greatly
facilitated by use of standardized data structures. The
Brain Imaging Data Structure (BIDS) is the standard format
for organizing brain imaging data from diverse modalities
(structural, diffusion, functional images, etc) (Gorgolewski
et al., 2016). BIDS includes not only the images, but also
images’ metadata in sidecar JSON files (e.g., imaging
parameters). BIDS Apps read such metadata to automati-
cally configure the correct processing workflow, making
them robust to heterogeneous data from different subjects
and sessions. Although image processing software often
depends on other software or packages, BIDS Apps are
containerized (i.e., as Docker or Singularity container
images) to encapsulate all dependencies and achieve por-
tability even on different platforms, for example, different
high performance computing (HPC) clusters (Gorgolewski
et al., 2017). Example BIDS Apps are QSIPrep (https://
github​.com​/PennLINC​/qsiprep; Cieslak et al., 2021) and
fMRIPrep (https://github​.com​/nipreps​/fmriprep; Esteban
et al., 2019, 2020); similar BIDS Apps such as XCP-D
(https://github​.com​/PennLINC​/xcp​_d; Adebimpe et al.,

2023; Ciric et al., 2018) consume preprocessed output
from BIDS Apps—or “BIDS derivatives”—and generate
additional derived measures.

While containerized BIDS Apps provide a major
advance for reproducible neuroscience, they do not
automatically preserve a full audit trail along the way.
Complete provenance of data processing results should
answer what input data were, which version of the BIDS
App was used, and how it was used (exact commands
and parameters for running BIDS Apps, etc). Such a full
audit trail of data processing is a necessary prerequisite
for fully reproducible research. However, obtaining a
faithful record of this audit trail is challenging—especially
for large datasets that are processed using HPC clusters.

Version control tools provide a well-described way to
record a full audit trail and enhance reproducibility. Git
(https://git​-scm​.com/) has been used for code version
control, however it is not efficient in tracking large binary
data. Leveraging Git and git-annex (https://git​-annex​
.branchable​.com/), DataLad (https://www​.datalad​.org/;
Halchenko et al., 2021) provides version control for data,
even large binary files like neuroimaging data (e.g., in NIfTI
format). The use of DataLad for large-scale reproducible
image processing was introduced in the FAIRly big frame-
work (Wagner et al., 2022). FAIR refers to findability,
accessibility, interoperability, and reusability (Wilkinson
et al., 2016). FAIRly big is a DataLad-based framework for
reproducible processing of large-scale datasets (Wagner
et al., 2022). DataLad and the FAIRly big framework cap-
ture provenance records of data processing, for example,
who applied which commands and code upon which
input data to generate which output data. Such detailed
records can be used for re-execution of the data process-
ing and also provide a full audit trail (Wagner et al., 2022).

Although the FAIRly big framework paves the way for
reproducible analysis at scale, its current implementation
remains challenging. It requires investigators to write
scripts for running the entire procedure; these scripts
involve numerous steps and substantial proficiency with
DataLad. This can be quite challenging for beginners—
and is often hard to debug even for experienced users. In
addition, these scripts also need to be customized for spe-
cific use cases. For example, the input datasets can

its scalability, we applied BABS to data from the Healthy Brain Network (HBN; n = 2,565). Taken together, BABS
allows reproducible and scalable image processing and is broadly extensible via an open-source development model.

Keywords: Reproducibility, BIDS Apps, software, MRI, big data, image processing

https://github.com/PennLINC/qsiprep
https://github.com/PennLINC/qsiprep
https://github.com/nipreps/fmriprep
https://github.com/PennLINC/xcp_d
https://git-scm.com/
https://git-annex.branchable.com/
https://git-annex.branchable.com/
https://www.datalad.org/

3

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

include different data modalities (e.g., structural MRI, func-
tional MRI, diffusion MRI); can be cross-sectional (single-
session) studies or longitudinal (multiple-session) studies;
and can be raw BIDS data or BIDS derivatives (e.g.,
fMRIPrep results). Furthermore, differences in the cluster
systems also need to be accounted for. Different HPC job
scheduling systems such as Sun Grid Engine (SGE) and
Slurm often have different commands even for the similar
functionality such as job submissions and status check-
ing. One straightforward way to implement the FAIRly big
framework is to write one script per use case, where input
dataset, BIDS App, and cluster system are fixed. However,
this approach results in a profusion of “one-off” programs
due to the many combinations of various input dataset
types, BIDS Apps, and different cluster systems.

To address these challenges, we introduce BIDS App
Bootstrap (BABS; http://pennlinc​-babs​.readthedocs​.io/),
a user-friendly and generalizable Python package for
reproducible image processing at scale. Capitalizing on
standard formats of neuroimaging data and containerized
software, BABS takes BIDS datasets as input and applies
BIDS Apps. The robustness of the BIDS App framework
to data heterogeneity also facilitates the generalization of
BABS to complex and large datasets. BABS automatically
generates all code for data processing based on users’
customization, and records the full audit trail in a scalable
way by leveraging DataLad and the FAIRly big framework.
BABS’s automation and generalizability to different use
cases are similar to those seen in BIDS Apps such as
fMRIPrep and QSIPrep, which wrap up the entire prepro-
cessing workflow and are generalizable to large, diverse
neuroimaging datasets. With a parsimonious set of pro-
grams, BABS supports user-friendly job submissions and
auditing on SGE and Slurm HPC clusters. As described
below, BABS facilitates reproducible, generalizable, and
scalable processing of BIDS datasets.

2.  MATERIALS AND METHODS

2.1.  Overview

BABS is a Python package for the reproducible applica-
tion of BIDS Apps. It leverages DataLad and the FAIRly
big framework to provide a full audit trail for the process-
ing of large-scale datasets. It automatically “bootstraps”
the need to execute the FAIRly big workflow: BABS gen-
erates all code for data processing and version tracking
with DataLad. As part of this process, BABS interacts
with HPC systems (e.g., SGE, Slurm) for submitting and
auditing jobs. The entire BABS workflow can be com-

pleted with a parsimonious set of command-line pro-
grams.

2.2.  Data provenance tracking via DataLad

BABS leverages DataLad (Halchenko et al., 2021) for
data provenance tracking. Much like Git (https://git​-scm​
.com/) provides version control for code, DataLad pro-
vides version control for data by building upon the func-
tionality of Git and git-annex (https://git​-annex​.branchable​
.com/). Instead of directly tracking the file contents, Dat-
aLad tracks the “checksum” of the file content, a short,
fixed-length hexadecimal number (e.g., 32 digits for MD5
checksum) representing the file content. This checksum
can be used to verify the file content and check any
changes in the file, as even a single byte change of the
file’s content would result in a change of the checksum.
Tracking this checksum is much cheaper than tracking
the file content directly. Therefore, DataLad is capable of
handling large files commonly seen in neuroimaging
datasets. A DataLad dataset is a Git repository with a
unique Universally Unique Identifier (UUID) and is des-
tined for managing and tracking data if git-annex is
enabled for that repository. As every change to the data-
set can be recorded as a separate commit with compre-
hensive metadata, the `datalad run` command can
be used to save changes to the dataset as a result of the
execution of any command, while recording the com-
mand within the Git commit associated with that change.
Based on these, DataLad provides machine-readable, re-
executable provenance records. The version-controlled
DataLad dataset can also be cloned to another place for
reuse or distribution. We refer the reader to the DataLad
Handbook (http://handbook​.datalad​.org/; Wagner et al.,
2023) to discover more about DataLad functionality and
the larger ecosystem of extensions.

2.3.  BABS workflow

BABS builds upon the workflow of the FAIRly big frame-
work (see Fig. 1), and can be used on HPC clusters. Here,
HPC clusters are computing resources that include mul-
tiple connected servers, or “compute nodes.” HPC clus-
ters utilize job scheduling systems to manage jobs
running on different compute nodes. Thus, many jobs
can be run in parallel on different compute nodes, making
HPC clusters powerful tools for large-scale data process-
ing. BABS supports SGE and Slurm, which are two of the
most popular HPC job scheduling systems. BABS allo-
cates the image processing for each subject (or session)

http://pennlinc-babs.readthedocs.io/
https://git-scm.com/
https://git-scm.com/
https://git-annex.branchable.com/
https://git-annex.branchable.com/
http://handbook.datalad.org/

4

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

into a “job” on HPC clusters. In this paper, we will follow
the common principles in BIDS format and use the term
“subject” to refer to a participant. The scope of a job is at
subject-level for single-session dataset and at session-
level for multiple-session dataset. For simplicity, in this
paper, we may use “a specific session” to refer to “a spe-
cific session within a subject.” For each job, the input
data from the corresponding subject (or session) will be
cloned from the input Remote Indexed Archive (RIA) to an
ephemeral (temporary) compute workspace. A RIA store
is a permanent store, for example, some storage space
on HPC clusters. The input data are then processed by a
BIDS App on a cluster compute node. The parameters for
executing the BIDS App are predefined by the user in a
YAML file; this will be explained in the next section “2.4.
BABS programs,” as well as in the Results section with
example YAML files. During the job run, all provenance is
tracked by DataLad, including code (e.g., exact Singular-
ity run command), input BIDS dataset(s), the BIDS App
and its version, and the results. At the end of the job run,
zipped results and the provenance are pushed to the out-
put RIA store as a new branch. Zipping results from each
job is to reduce the possibility of conflicts when merging
in the next step, as well as to reduce the inode usage on
the filesystem. Processing for all subjects (or sessions) is
parallelized. After all jobs are completed, results and
provenance of successful jobs are merged and readily

available in the output RIA store. Note that all the code for
data processing and provenance tracking is automati-
cally generated and internally executed—that is, “boot-
strapped”—by BABS.

2.4.  BABS programs

To achieve steps in the BABS workflow, BABS features
several command-line interface programs (Fig. 2). These
programs can be run in a terminal connected to an HPC
cluster. Detailed descriptions of how to use these pro-
grams can be found in the online documentation: https://
pennlinc​-babs​.readthedocs​.io​/en​/stable​/cli​.html.

BABS requires three inputs: (a) one or more BIDS Dat-
aLad datasets, (b) a DataLad dataset of containerized
BIDS App, and (c) a container configuration YAML file.
Instead of directly using BIDS datasets or BIDS App
images, we require them to be tracked by DataLad, that
is, as “DataLad datasets,” so that these two inputs to
BABS come with their version history. DataLad datasets
of BIDS and containerized BIDS App can also be easily
cloned by BABS. Here, a “container DataLad dataset”
means a collection of container images in a folder
tracked by DataLad. As the content is a set of container
images, it contains software that is used in the image
processing workflow. It should be noted that BABS also
supports input BIDS DataLad datasets that are remote,

Fig. 1.  Schematic of the BABS workflow. For a job of a subject (single-session dataset) or a session (multiple-session
dataset), the subject- (or session-) specific data are cloned from the permanent store—the input Remote Indexed Archive
(RIA) store—to an ephemeral compute workspace, along with the containerized BIDS App and code for executing the BIDS
App (left of the figure). The job will be completed at a cluster compute node. Jobs of all subjects (or sessions) are iteratively
submitted to the compute nodes and computed in parallel (the entire box). Results from each job are zipped and pushed to
the output RIA store as a separate branch (right of the figure). After all jobs have finished, results from all successful jobs are
merged. The full audit trail of the successful jobs is also saved in the output RIA store (top of the figure).

https://pennlinc-babs.readthedocs.io/en/stable/cli.html
https://pennlinc-babs.readthedocs.io/en/stable/cli.html

5

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

for example, on OSF (e.g., see “3.2. Example walk-
through” in the Results section), or on some local serv-
ers to which HPC compute nodes have access. If the
HPC compute nodes have access to the remote file sys-
tem or the internet, users can simply provide the path to
the remote BIDS DataLad dataset (including those in
remote RIA stores) as the input to BABS. In this case,
users do not need to download all the data content into
the permanent disk space of HPC clusters before run-
ning BABS. Instead, when jobs are running on compute
nodes, the scripts generated by BABS will utilize Data-
Lad programs and automatically download the data con-
tent needed for each job into the ephemeral (temporary)
compute workspace.

The last required input, a container configuration
YAML file, is used to define how the BIDS App should be
executed. Example YAML files are shown in Figures 3A
and 4. This YAML file is designed to be abstracted from
the specifics of different cluster system types (e.g., SGE,
Slurm). For example, there are several commonly used
directive commands for requesting cluster resources in
SGE and Slurm. Although they have similar goals (e.g.,
requesting memory), the commands are different in SGE
and Slurm clusters. To reduce the differences in YAML
files for different clusters, several commonly used direc-
tive commands that share similar functions on SGE and
Slurm have been abstracted into keywords, for example,
hard_memory_limit (see below: line #14 in Fig. 3A;

Fig. 2.  BABS user-oriented workflow (top figure) and descriptions of BABS programs (bottom table).

6

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

line #22 in Fig. 4). Most of these keywords can be used for
both SGE and Slurm clusters without further changes. This
facilitates the reuse of YAML files on another cluster with
only minor changes. It should be noted that it is unavoid-
able that differences between specific HPC clusters will
require some minor customizations of the YAML files, for
example, how the execution environment is configured. We
provide some examples on how to customize the YAML
files in the “3.2. Example walkthrough” in the Results sec-
tion. More details can be found in BABS documentation:
https://pennlinc​-babs​.readthedocs​.io​/en​/stable​
/preparation​_config​_yaml​_file​.html.

With these three required inputs, babs-init initial-
izes a BABS project, a folder that will hold input data,
container, code, and results. A BABS project can be
located in the storage space of a cluster. An example
folder structure of a BABS project is shown in Figure 3C.
babs-init creates an analysis folder within this BABS
project, and clones the input BIDS DataLad dataset(s)
and the container DataLad dataset into this analysis
folder. In addition, it generates the code to be used inter-
nally, including code for executing the desired BIDS App
and DataLad version control. Importantly, this analysis
folder is itself a DataLad dataset whose nested
content—including data and code—is tracked by Data-
Lad. Additionally, babs-init creates input and output
RIA stores as the DataLad siblings (“copies”) of analysis
DataLad dataset. babs-init also determines the list of
the subjects (or sessions) to analyze based on an initial
inclusion list optionally provided by the user (argument
--­list-­sub-­file). This list can be further filtered by
excluding those subjects (or sessions) that do not have
required files optionally defined in the container configu-
ration YAML file.

After initializing a BABS project, babs-check-setup
will be used to confirm this BABS project has been set up
properly. Specifically, it will perform sanity checks of the
components of this BABS project, for example, if all nec-
essary scripts have been generated, if input datasets
have been successfully cloned, etc. We highly recom-
mend users submit a toy job using argument --job-test

to make sure necessary packages (e.g., DataLad) are
installed in the designated environment, and that setup
specified in the container configuration YAML file (e.g.,
section script_preamble) is working as expected.
babs-check-setup can be also used as a diagnostic
tool, as it prints out information for users to review, includ-
ing configurations of the BABS project (e.g., input BIDS
dataset’s name and path) and versions of necessary
packages in the designated environment. This information
is also helpful for submitting bug reports if issues arise.

Once the setup is complete, the BABS project is ready
for job submitting and status monitoring via babs-
submit and babs-status. These two programs inter-
act with the cluster’s job scheduling system and can be
used iteratively. Each job of data processing operates on
a specific subject or a specific session. babs-submit
provides several submission options, including submitting
specific subjects’ (or sessions’) jobs, submitting a specific
number of jobs, and submitting all the remaining jobs.

babs-status can be used to check job status. The job
status of a subject or a session can be one of these cate-
gories: (a) the job has not been submitted yet; (b) the job
has been submitted but is waiting in the queue (“pending”);
(c) the job has been submitted and is running on a compute
node; (d) the job has successfully finished; and (e) the job
failed with an error. babs-status will check job statuses
from all subjects (or sessions) and print out a summary
containing the number of jobs in each category. In addition,
babs-status can also perform auditing on failed jobs to
provide more information regarding why those jobs were
failed. Finally, babs-status can also be used to resubmit
failed or pending jobs. Options include resubmitting spe-
cific subjects’ (or sessions’) jobs, and resubmitting all of
failed or pending jobs. Note that although the processing of
a subject’s (or session’s) images can be resubmitted using
babs-status, at any given time, there should be only one
job submitted and under “running” or “pending” for a spe-
cific subject (or session).

Results from each job are compressed (“zipped”) and
are kept in a separate branch. After all jobs are finished,
babs-merge can be used to merge all the results and

Fig. 3.  Materials used and generated in the example walkthrough of BABS. (A) Example YAML file for toy BIDS App.
This YAML file was prepared for Penn Medicine CUBIC SGE cluster; however, with some customization (highlighted lines)
based on the clusters users are using, this YAML file can also be applied to other clusters, even for a Slurm cluster. (B)
Example babs-init command. The highlighted line requires customization. (C) The folder structure of the BABS project.
Note that after babs-merge is applied, there will be a new folder merge_ds in parallel with other main folders (e.g.,
analysis) in the BABS project. (D) Generated Singularity run command based on the YAML file in panel A. (E) Part of
printed messages from babs-check-setup, which provides information of designated environment and temporary job
compute space. (F) After all jobs have finished, the list of files and folders inside the cloned output RIA store.

https://pennlinc-babs.readthedocs.io/en/stable/preparation_config_yaml_file.html
https://pennlinc-babs.readthedocs.io/en/stable/preparation_config_yaml_file.html

7

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

8

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

provenance from successfully finished jobs into the
mainline branch in the output RIA. After merging, results
are ready to consume. Users can use DataLad com-
mands to clone the output RIA, get the results content,
and unzip the results.

2.5.  Open-source software development and release

The source code of BABS is version controlled and pub-
licly available on GitHub (https://github​.com​/PennLINC​
/babs). We have been using CircleCI to run tests and
make releases. Specifically, each new commit pushed to
GitHub triggers CircleCI jobs to run the BABS’s unit tests.

This helps ensure the quality and stability of BABS after
each commit. When a version tag is pushed to GitHub, a
new version of the Python package of BABS will be auto-
matically built by CircleCI jobs and publicly released on
the Python Package Index (PyPI): https://pypi​.org​/project​
/babs/.

2.6.  Ethics statement

No new data were collected specifically for this paper.
The Healthy Brain Network (HBN; Alexander et al., 2017)
study was approved by the Chesapeake Institutional
Review Board. Informed consent was obtained from each

Fig. 4.  Container configuration YAML file used in application of BABS to the HBN dataset.

https://github.com/PennLINC/babs
https://github.com/PennLINC/babs
https://pypi.org/project/babs/
https://pypi.org/project/babs/

9

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

participant aged 18 or older. For participants younger
than 18, written consent was obtained from their legal
guardians and written assent was obtained from the par-
ticipant. In addition, during the consent process, all par-
ticipants provide informed consent for their data to be
shared via IRB approved protocols.

3.  RESULTS

3.1.  Example use cases

BABS is designed to process large BIDS datasets with
BIDS Apps on HPC clusters with job scheduling systems.
Currently, BABS supports two popular HPC job schedul-
ing systems, SGE and Slurm. The major differences
between job scheduling systems lie in different com-
mands for how the jobs are managed, for example, in job
submissions, status checking, etc. BABS generates and
uses different code and commands of job managements
tailored for different job scheduling systems.

BABS can be used to process data with BIDS Apps.
Thus far, BABS has been used to process data using
fMRIPrep (https://github​.com​/nipreps​/fmriprep; Esteban
et al., 2019, 2020), QSIPrep (https://github​.com​/PennLINC​
/qsiprep; Cieslak et al., 2021), and XCP-D (https://github​
.com​/PennLINC​/xcp​_d; Ciric et al., 2018) (Table 1). Besides
the BIDS Apps listed in Table 1, we also provide a toy BIDS
App for quickly testing BABS (https://hub​.docker​.com​/r​
/pennlinc​/toy​_bids​_app). This toy BIDS App will be used in
the example walkthrough (see below).

BABS accepts different input BIDS datasets, including
raw BIDS datasets, or BIDS derivatives datasets. The lat-
ter case often includes results from another BIDS App, for
example, FreeSurfer results from fMRIPrep anatomical
workflow. When using such BIDS derivatives as input
datasets, currently BABS expects that the results of each
subject (or session) are zipped. This is to facilitate the
reuse of the BABS results in zipped format as an input
dataset for another BABS project. Therefore, we also refer
to it as a “zipped BIDS derivatives dataset.” BABS also

allows more than one input BIDS dataset. An example use
case would be applying the fMRIPrep BOLD preprocess-
ing workflow upon functional MRI data from a raw BIDS
dataset, with another input BIDS derivatives dataset,
FreeSurfer results, ingressed (Table 1, the second use
case). For use cases listed in Table 1, we have provided
example container configuration files available in BABS
GitHub repository. Please refer to this markdown file for
the list of available files and their links: https://github​.com​
/PennLINC​/babs​/blob​/main​/notebooks​/README​.md.

Beyond the existing tested applications in Table 1,
BABS can be used to process data with most BIDS Apps
after users create new container configuration YAML files
for these BIDS Apps accordingly. Furthermore, BABS can
be extended to be used with other scheduling systems
(e.g., LSF) that are not yet supported. We welcome
enhancements from the user community via new pull
requests at the BABS GitHub repository (https://github​
.com​/PennLINC​/babs). Below, we demonstrate the use of
BABS first via a detailed walkthrough using a toy exam-
ple. Second, we illustrate its application to a large-scale
dataset (the structural data of the Healthy Brain Network).

3.2.  Example walkthrough

To demonstrate an example usage of BABS, we provide
an example walkthrough where a toy BIDS dataset and
toy BIDS App are used. The example walkthrough is also
available as online documentation: https://pennlinc​-babs​
.readthedocs​.io​/en​/stable​/walkthrough​.html, where more
details are provided. We recommend referring to the
online version of this example walkthrough and copying
and pasting the commands from there to ensure use of
the most current version and to allow for tighter control
over command text formatting (compared to a journal
publication). As detailed below, there are four major steps
in this example walkthrough: (1) Get prepared; (2) Create
a BABS project; (3) Submit jobs and check job status;
and (4) After jobs have finished.

Table 1.  Example use cases of BABS.

Use cases / BIDS Apps 1st input BIDS dataset 2nd input BIDS dataset

1 fMRIPrep (for fMRI) Raw BIDS (unzipped) N/A
2 fMRIPrep (with FreeSurfer results

ingressed)
Raw BIDS (unzipped) FreeSurfer results (BIDS

derivatives, zipped)
3 QSIPrep (for dMRI) Raw BIDS (unzipped) N/A
4 XCP-D (for fMRI) fMRIPrep results (BIDS

derivatives, zipped)
N/A

fMRI, functional MRI; dMRI, diffusion MRI.

https://github.com/nipreps/fmriprep
https://github.com/PennLINC/qsiprep
https://github.com/PennLINC/qsiprep
https://github.com/PennLINC/xcp_d
https://github.com/PennLINC/xcp_d
https://hub.docker.com/r/pennlinc/toy_bids_app
https://hub.docker.com/r/pennlinc/toy_bids_app
https://github.com/PennLINC/babs/blob/main/notebooks/README.md
https://github.com/PennLINC/babs/blob/main/notebooks/README.md
https://github.com/PennLINC/babs
https://github.com/PennLINC/babs
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html

10

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

Step 1. Get prepared. We first install BABS and depen-
dent packages in a conda environment called babs.
The installation steps have been detailed in our online
documentation: https://pennlinc​-babs​.readthedocs​.io​/en​
/stable​/installation​.html. Note that besides the required
dependencies like DataLad, Git, git-annex, and datalad-
container, we also installed datalad-osf Python package
so that we can use a toy BIDS dataset available on OSF as
input. We used BABS version 0.0.3 to prepare this exam-
ple walkthrough. As there would be more enhancements in
BABS in future releases that might potentially alter the
commands or steps here, we encourage users to use the
latest BABS version available on PyPI and the latest stable
version of walkthrough available online (https://pennlinc​
-babs​.readthedocs​.io​/en​/stable​/walkthrough​.html).

We first create a folder called babs_demo in the root
directory as the working directory in this example walk-
through:

conda activate babs
mkdir -p ~/babs_demo
cd babs_demo

Now, we need to prepare three inputs required by
BABS: an input BIDS DataLad dataset, a DataLad data-
set of containerized BIDS App (“container DataLad data-
set”), and a container configuration YAML file. For the
input BIDS DataLad dataset, we can use a toy, multiple-
session BIDS DataLad dataset publicly available on OSF:
https://osf​.io​/w2nu3/. In this BIDS dataset, there are two
subjects, each with three sessions. As long as the com-
pute nodes of the HPC cluster are connected to the inter-
net, the OSF link of this dataset can be directly copied as
the path to the input BIDS DataLad dataset when running
babs-init, and BABS will download all necessary files.
For compute nodes without internet access, please refer
to the online version of the walkthrough: https://pennlinc​
-babs​.readthedocs​.io​/en​/stable​/walkthrough​.html.

For the BIDS App, we will use the toy BIDS App in this
example walkthrough to allow for very rapid execution of
the jobs. For a raw BIDS dataset like the one we will use
in this walkthrough, this toy BIDS App performs a simple
task when used with BABS: it will count non-hidden files
in a subject’s folder. Its Docker image is publicly available
on Docker Hub: https://hub​.docker​.com​/r​/pennlinc​/toy​
_bids​_app. To prepare its container DataLad dataset, we
first pull toy BIDS App (version 0.0.7) as a Singularity
image from the Docker Hub:

cd ~/babs_demo
singularity build \
   toybidsapp-0.0.7.sif \
   docker://pennlinc/toy_bids_app:0.0.7

Now we can see the Singularity image file
toybidsapp-0.0.7.sif in the current directory. We
then create a DataLad dataset of this container (i.e., let
DataLad track this Singularity image):

datalad create -D "toy BIDS App"
toybidsapp-container

cd toybidsapp-container
datalad containers-add \
--url ${PWD}/../toybidsapp-0.0.7.sif \
toybidsapp-0-0-7

Now, the DataLad dataset toybidsapp-container
which contains the toy BIDS App container is ready to
use. As the Singularity image file has been copied into
toybidsapp-container, we can remove the original
Singularity image file:

cd ..
rm toybidsapp-0.0.7.sif

Finally, we need to prepare a YAML file that instructs
BABS for how to run the BIDS App. Figure 3A shows an
example YAML file for toy BIDS App, and we will use it in
this example walkthrough. Note that this YAML file was
prepared for Penn Medicine CUBIC SGE cluster; how-
ever, this YAML file can also be applied to other clusters
(including Slurm clusters) after some customization (high-
lighted lines).

There are several sections in this YAML file. The first
section singularity_run defines the arguments and
their values for running the BIDS App (line #2-5, Fig. 3A).
The argument --no-zipped tells the toy BIDS App that
the input dataset is unzipped, raw BIDS dataset. The
other two arguments, --dummy and -v are both exam-
ples of what an argument could look like, where argu-
ment --dummy can take any value afterwards, and
argument -v does not take values.

The next section, zip_foldernames, is about the
results zip files (line #8-9, Fig. 3A). As the results from
each subject (or each session) will be zipped, here we tell
BABS the name(s) of the output folder(s) to be zipped is
toybidsapp. In addition, we also provide the version of
this toy BIDS App, 0-0-7, so that it can be added to the
zip filenames. This will result in the zip filenames being
named according to the convention of sub-01_ses-A_
toybidsapp-0-0-7.zip for subject 01 (sub-01) and
session A (ses-A).

The third section, cluster_resources (line #12-14,
Fig. 3A), defines cluster resource requirements such as
the memory requirement (line #14, Fig. 3A) using
scheduler-agnostic keywords. The interpreting shell to be
used in the job script (line #13, Fig. 3A) is also defined in

https://pennlinc-babs.readthedocs.io/en/stable/installation.html
https://pennlinc-babs.readthedocs.io/en/stable/installation.html
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://osf.io/w2nu3/
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://pennlinc-babs.readthedocs.io/en/stable/walkthrough.html
https://hub.docker.com/r/pennlinc/toy_bids_app
https://hub.docker.com/r/pennlinc/toy_bids_app

11

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

this section. These items will be converted to scheduler-
specific directives in the job script.

There are inevitable idiosyncrasies across clusters;
thus, this section often requires customization by users for
their clusters. For the line of interpreting_shell,
some Slurm clusters might suggest users to use `inter-
preting_shell: "/bin/bash -l"` instead; however,
users should consult their clusters’ documentation and
administrator. Customized commands can also be added
after customized_text, without using the predefined
cluster resources keywords in BABS. For example, for
Slurm clusters, users may request specific partition(s) via:

cluster_resources:
…
customized_text: |

#SBATCH -p <partition_names>

The fourth section, script_preamble (line #17-18,
Fig. 3A), defines commands that should be run before
data processing starts. It could include commands for
setting up the virtual environment (line #18, Fig. 3A), for
loading necessary modules, etc. For example, if needed,
please load the module of Singularity or one of its suc-
cessors (i.e., SingularityCE or Apptainer which BABS cur-
rently supports). Because each cluster may be configured
differently, this section often requires customization.

The final section in this YAML file is called job_
compute_space (line #21, Fig. 3A). This is to set the
location of the compute space where the jobs will run. As
results will be saved to the permanent storage space out-
put RIA, we recommend using a temporary space here,
such as space on the compute node, to avoid risk of
accumulating unnecessary data from failed jobs which
takes up space. The path "${CBICA_TMPDIR}" in line
#21 in Figure 3A was specifically used for Penn Medicine
CUBIC cluster, and other clusters will likely have different
paths to the temporary compute space, so customization
is needed here.

Once the user has finished inputting all necessary
customization, we save the YAML file as file config_
toybidsapp_demo.yaml into directory ~/babs_demo.
Note that currently this directory also includes the con-
tainer DataLad dataset toybidsapp-container.

Step 2. Create a BABS project. With all three inputs
ready, we can now start to use BABS for data analysis. We
first use babs-init to create a BABS project. This is a
folder where input DataLad datasets of BIDS dataset(s)
and the containerized BIDS App are cloned to, all scripts
are generated, and results and provenance are saved. Fig-
ure 3B shows an example command of babs-init. With
this example command, we create a BABS project called

my_BABS_project (line #4, Fig. 3B) in directory
~/babs_demo. We call the input dataset as BIDS, and we
provide the OSF link as its path (line #5, Fig. 3B). For the
container and its execution, we use the container DataLad
dataset toybidsapp-container and the YAML file we
just prepared (line #6-8, Fig. 3B). We make sure that the
string toybidsapp-0-0-7 used in --container_name
(line #7, Fig. 3B) is consistent with the image name we
specified when preparing toybidsapp-container. As
this input BIDS dataset is a multiple-session dataset, we
specify this as `--type_session multi-ses` (line #9,
Fig. 3B). Finally, because we will run this on an SGE clus-
ter, we specify the cluster system type as `--type_
system sge` (highlighted line #10, Fig. 3B). If a Slurm
cluster is used, a user would change line #10 to ̀ --type_
system slurm`. After running this babs-init com-
mand, we see this message at the end, indicating the
success: “`babs-init` was successful!”.

At this point, a folder named my_BABS_project has
been generated in the directory ~/babs_demo. Its folder
structure is shown in Figure 3C. This folder includes three
sub-folders, analysis, input_ria, and output_
ria. The folder analysis is also a DataLad dataset
which includes the cloned inputs (input BIDS DataLad
dataset and container DataLad dataset), and generated
scripts. The folders input_ria and output_ria are
the input and output RIA stores, respectively, and they
are DataLad siblings of analysis. When jobs are run-
ning, inputs are cloned from input RIA store, and results
and provenance will be pushed to output RIA store.

It is very important to check two things in the gener-
ated code. The first is the Singularity run command for
running the BIDS App. This command has been printed
out by babs-init (see Fig. 3D). As you can see, the
arguments and their values specified in the singularity
_run section in YAML file (line #2-5, Fig. 3A) have been
added to the generated Singularity run command
(Fig. 3D). BABS has also automatically handled the posi-
tional arguments of the BIDS App, including input direc-
tory, output directory, and analysis level ('participant').
The --participant-label parameter is also covered
by BABS.

The second thing to check is the generated directives
in the job script. These directives are in the header lines
of the script. We get them via:

cd ~/babs_demo/my_BABS_project
head analysis/code/participant_job.sh

The first several lines starting with `#` and before
the line `# Script preambles:` are the generated
directives. Using the YAML file above without further

12

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

modifications, for BABS version > 0.0.3 applied on an
SGE cluster, we will see these directives:

#!/bin/bash
#$ -l h_vmem=2G

and on an Slurm cluster:
#!/bin/bash
#SBATCH --mem=2G

It is also important to let BABS check to be sure that
the project has been initialized correctly before attempt-
ing to run many data processing jobs. One should run a
test job to make sure that the environment and cluster
resources specified in the YAML file are workable. We
use babs-check-setup to do so. Note that the follow-
ing BABS commands will be called from where the BABS
project is located, ~/babs_demo/my_BABS_project.
After switching to this directory, we can use ${PWD} for
argument --project-root in BABS commands.

cd ~/babs_demo/my_BABS_project
babs-check-setup \
--project-root ${PWD} \
--job-test

Because we ask babs-check-setup to submit a
test job, it might take a bit of time for the above com-
mand to finish, depending on how busy the cluster is.
After running babs-check-setup, we see this message
at the end, indicating the success: “`babs-check-
setup` was successful!”.

Before moving on, we review the summarized informa-
tion of the designated environment and temporary com-
pute space where the jobs will run. This summarized
information has been printed out by babs-check-
setup (see Fig. 3E). We confirm that the temporary com-
pute space is writable (‘true’), the Python interpreter is
what we desire, and the required packages have been
installed, and their version numbers are appropriate.

If babs-init succeeded, but running babs-check-
setup with a test job fails, or the summarized informa-
tion from babs-check-setup is not what we desire,
currently we recommend removing the BABS project,
fixing the problems (e.g., in the babs-init command, or
in the YAML file), and generating a new BABS project
using babs-init. Detailed instructions can be found in
the online documentation: https://pennlinc​-babs​.read
thedocs​.io​/en​/stable​/babs​-check​-setup​.html.

Step 3. Submit jobs and check job status. We will
iteratively use babs-submit and babs-status to sub-
mit jobs and check job status. We first use babs-status
to check the number of jobs we initially expect to finish
successfully. In this example walkthrough, as no initial list

was provided, BABS determines this number based on the
number of sessions in the input BIDS dataset. We did not
request extra filtering (based on required files) in our YAML
file either, so BABS will submit one job for each session.

cd ~/babs_demo/my_BABS_project
babs-status --project-root $PWD

Printed messages from babs-status tell us that
“There are in total of 6 jobs to complete”.

We now use babs-submit to submit one job and see
if it will finish successfully. By default, babs-submit will
only submit one job.

babs-submit --project-root $PWD

Now, the job for the first session, sub-01/ses-A has
been submitted. We can check the job status via babs-
status:

babs-status --project-root $PWD

If this first job finished successfully, the printed mes-
sages from babs-status will tell us that “1 job(s)
are successfully finished”.

Now, we submit all other jobs by specifying --all:

babs-submit --project-root $PWD --all

We can again call ̀ babs-status --project-root
$PWD` to check status. babs-status will tell us the
number of jobs submitted, finished, pending, running, or
failed. If all jobs have finished successfully, we will see
printed messages: “6 job(s) are successfully
finished” and “All jobs are completed!”.

Step 4. After jobs have finished. After all jobs have
finished successfully, we will merge all the results and
provenance. Each job was executed on a different
branch, so we must merge them together into the main-
line branch. We now run babs-merge in the root direc-
tory of my_BABS_project:

babs-merge --project-root $PWD

After this command finishes running, we see “`babs-
merge` was successful!” at the end of the printed
messages. Now we are ready to consume the results.

To consume the results, we should not access the out-
put RIA store or merge_ds directories inside the BABS
project. Instead, we will clone the output RIA as another
folder (e.g., called my_BABS_project_outputs) to a
location external to the BABS project:

cd ..
datalad clone \
ria+file://${PWD}/my_BABS_project/
output_ria#~data \
my_BABS_project_outputs

https://pennlinc-babs.readthedocs.io/en/stable/babs-check-setup.html
https://pennlinc-babs.readthedocs.io/en/stable/babs-check-setup.html

13

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

The first command, `cd ..` changes the directory
back to folder babs_demo, where my_BABS_project
locates. After running above commands, we then go into
this new folder my_BABS_project_outputs and see
what is inside:

cd my_BABS_project_outputs
ls

The content in this folder is shown in Figure 3F. As we
see, results of each session have been saved in a zip file.
Before unzipping a zip file, for example, the zip file for
sub-01/ses-A, we need to get its content first:

datalad get sub-01_ses-A_toybidsapp-0-
0-7.zip
unzip sub-01_ses-A_toybidsapp-0-0-7.zip

From the zip file, we get a folder called toybidsapp.
We check the content of this folder via:

cd toybidsapp
ls

In this folder, there is a file called num_nonhidden
_files.txt. This is the result from the toy BIDS App,
which is the number of non-hidden files in this subject’s
data. Note that for raw BIDS dataset and when used with
BABS, toy BIDS App counts at subject-level, even though
current dataset is a multiple-session dataset. We print
out the content of this text file:

cat num_nonhidden_files.txt

And the content should be “67”. “67” is the expected
number for sub-01 (which we are looking at), “56” is the
expected number for sub-02. Getting the expected num-
ber means that toy BIDS App and BABS ran as expected.

3.3.  Application to a large-scale dataset

Next, we applied BABS to the HBN dataset using the
fMRIPrep anatomical workflow. As above, this was exe-
cuted on the Penn Medicine CUBIC SGE cluster. HBN is
a single-session dataset, that is, each subject only has
one session. We first prepared the input BIDS DataLad
dataset, container DataLad dataset of fMRIPrep (Esteban
et al., 2019; version 20.2.3), and container configuration
YAML file (see Fig. 4). In this container configuration
YAML file, we set the job run time limit of two days (line
#24, Fig. 4), which is sufficient for fMRIPrep anatomical
workflow. Jobs which could not finish within two days are
probably stuck and should be killed by the cluster.

We first ran babs-init to initialize the BABS project.
After it finished, we used babs-check-setup with
--job-test mode on to make sure that the environ-

ment and cluster resources specified in the YAML file
were workable. babs-check-setup command finished
successfully, suggesting that real jobs of fMRIPrep were
ready to submit.

Next, we used babs-status to check how many
subjects’ jobs there are to complete. The list of subjects
was generated during babs-init, where only subjects
with T1-weighted images were included, and such data
filtering was set on line #40-42 in the YAML file shown in
Figure 4. There were 2,565 jobs to complete, where each
job corresponds to a subject. We then submitted the first
10 jobs using babs-submit with argument `--count
10` to confirm real jobs could finish without error. After
almost a day, all of these 10 jobs finished successfully
according to babs-status. This told us that the requested
cluster resources were sufficient for the real jobs.

We then submitted jobs for all of the remaining sub-
jects using babs-submit with argument --all. After
that, we ran babs-status episodically to check job sta-
tus. Figure 5 shows example printed messages from
babs-status during this process. The babs-status
command is highlighted in blue. To audit the failed jobs,
we used container configuration YAML file (line #3-4,
Fig. 5) and turned on --job-account mode (line #5,
Fig. 5). There were two major parts in the printed mes-
sages: the job status summary and the failed job audits.
Based on the job status summary, at that point, all 2,565
subjects’ jobs had been submitted (line #11, Fig. 5).
Among them, 1,808 jobs successfully finished; 196 jobs
were waiting in the queue (“pending”); 342 jobs were run-
ning; and 219 jobs failed (line #12-16, Fig. 5).

Next, to further understand why these jobs failed, and
to audit how many jobs had failed due to each reason,
babs-status performed failed job audits. It first
searched for alert messages in log files of these failed
jobs that were predefined in the container configuration
YAML file (line #46-52, Fig. 4). These alert messages,
such as “Excessive topologic defect encoun-
tered”, were messages that may be found in log files of
failed jobs and may be informative for why a job had
failed. babs-status identified two failed jobs that had
alert message of “fMRIPrep failed” in standard out-
put (stdout) log file, 17 failed jobs with “Excessive
topologic defect encountered”, two failed jobs
with “Numerical result out of range”, and one
failed job with “mris_curvature_stats: Could not
open file” (line #19 and #21-23, Fig. 5).

Finally, there were 197 failed jobs without predefined
alert messages in their log files (line #20, Fig. 5). This indi-
cates these jobs failed for reasons other than the ones

14

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

described above. With --job-account mode on,
babs-status further called cluster’s job accounting
command to diagnose the reason. All of these 197 failed
jobs had failed code 37: “qmaster enforced h_rt,
h_cpu, or h_vmem limit” (line #25-26, Fig. 5). This
tells us that these jobs were killed by the cluster because
they exceeded resource limits. As we have set job run
time limit (h_rt) of two days in the container configura-
tion YAML file, these jobs likely failed because they did
not finish within two days, indicating they got stuck at
one step of the processing pipeline.

As failed job auditing was turned on (i.e.,
--container-­config-­yaml-­file and --job-account),
this example babs-status command at this point fin-
ished after around half an hour. Notably, without failed job
auditing (using only the job status summary), babs-
status will only require one to two minutes even for a
very large dataset like HBN. Note that the run time of a
BABS command also depends on how busy the cluster
is, so it is normal for the run time to vary.

After the first round of submissions of all subjects’
jobs, 2,231 jobs successfully finished, and 334 jobs
failed. In a large dataset like HBN with heterogeneous
data quality, it is expected that jobs failed due to issues

such as failed surface reconstruction by FreeSurfer.
Sometimes, rerunning the jobs may solve the problem.
Therefore, we resubmitted these 334 failed jobs using
babs-status with the argument `--resubmit
failed`. In the end, a total of 2,258 subjects’ jobs suc-
cessfully finished, and 307 subjects’ jobs failed.

At this time, all successful jobs’ results were on differ-
ent branches. We applied babs-merge to merge them
into the mainline branch, resulting in a complete,
provenance-tracked DataLad dataset. The results were
ready to consume. To check the results, we used Data-
Lad’s command `datalad clone` to clone the output
RIA to a human readable folder outside the BABS project.
After getting into this new folder, we could see 2,258 zip
files, each containing results from one subject. By using
`datalad get`, we copied the content of one zip file
into the cloned folder. After unzipping this zip file, we suc-
cessfully got the expected results from the correspond-
ing subject.

To check the data provenance tracked by DataLad in
this clone of the results, we used command `git log
--oneline` to list the Git commit history of the entire
workflow of BABS (Fig. 6A). We further entered the com-
mand `git show 09ce675` to check the provenance

Fig. 5.  Example babs-status command (in blue) and corresponding printed messages during the application of BABS
to the HBN dataset. The babs-status command was run in the root directory of the BABS project.

15

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

record of the last job shown in the history: commit
09ce675, for subject sub-NDARYT155NHX. This com-
mand printed out the machine-readable, re-executable
provenance record of this subject’s data processing job,
including the exact command used, input BIDS data and
container image, results zip file, etc (Fig. 6B). With this
provenance record and the code saved in the output RIA
store, data processing of any job can be repeated, mak-
ing data processing fully reproducible. Here, we skip the
demonstration of such recomputation, as this has been
demonstrated in the FAIRly big framework paper (Wagner
et al., 2022).

4.  DISCUSSION

BABS was developed to respond to the reproducibility
crisis in neuroimaging research and maximize reproduc-

ibility in image processing. The full audit trail recorded by
DataLad and FAIRly big framework provides complete
reproducibility for processing large-scale datasets. As
discussed below, BABS allows for reproducible and scal-
able applications of different BIDS Apps on HPC clusters
that are accessible to general users.

4.1.  Reproducible data analyses

There have been emerging tools for enhancing reproduc-
ibility, for example, Git for code version control, DataLad
for data version control, as well as containerized BIDS
Apps that are portable and encapsulate all dependent
software. However, neuroimaging data analyses often
involve various components, including input datasets,
software and code, commands and parameters, results,
etc. A full audit trail of data processing is essential for

Fig. 6.  Git log history and example data provenance of the application to the HBN dataset. (A) The Git log history of the
entire workflow of BABS (only first several lines, i.e., last several commits are shown). (B) An example machine-readable,
re-executable provenance record of a subject’s data processing job.

16

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

complete reproducibility; however, it is often painful to
record a full audit trail for complex, heterogeneous, and
large datasets. Leveraging DataLad and FAIRly big
framework, BABS supports automatic data provenance
tracking. This allows users to find detailed data prove-
nance records for results, even from a large-scale data-
set. Such detailed records link the results to all other
components in neuroimaging data analyses by answer-
ing how the results were generated: which input datasets
were used, what the exact code, commands, and version
of the BIDS App were applied, etc. These detailed records
can be retrospectively retrieved when reporting detailed
methods or protocol of the study.

In addition, the results and the data provenance
records can be shared after all of them are merged. This
can be done by cloning and sharing the output RIA store
of the BABS project, just like other DataLad datasets. For
example, the list of files and their remote availability can
be shared on GitHub; meanwhile, the data content can be
shared on Amazon Web Services (AWS) or OSF platforms.

4.2.  Scalability to large-scale datasets

Compared to small datasets, large neuroimaging data-
sets produce more reproducible and replicable findings,
especially in the context of the small effect size of many
brain-behavior associations (e.g., Liu et al., 2023; Marek
et al., 2022). Large sample sizes enhance statistical
power; however, their size, complexity, and heterogeneity
also present challenges in data processing. The chal-
lenges include not only data provenance tracking (as dis-
cussed above), but also HPC job management. BABS is
designed to scale for applications to large-scale datasets
in an HPC environment. As shown in the application to
the HBN dataset, babs-submit and babs-status pro-
vide simple yet powerful interfaces for users to manage
numerous jobs, including job submission, status check-
ing, and auditing of failed job. These features facilitate its
applications to large-scale datasets.

4.3.  Generalizability to different use cases

There are numerous use cases of neuroimaging data pro-
cessing, including different input BIDS datasets, BIDS
Apps, and HPC cluster platforms. It is not efficient for
researchers to implement one script per use case; the
profusion of resulting code also has the potential to
impact reproducibility. Instead, BABS creates (i.e., boot-
straps) scripts tailored for different use cases. In this way,
maintenance and enhancements are only needed for the

source code of BABS, instead of numerous scripts for
different use cases. Currently, BABS supports several
common use cases, including input BIDS datasets in dif-
ferent forms (one or more; single-session and multiple-
session; raw BIDS data and BIDS derivatives), several
BIDS Apps (fMRIPrep, QSIPrep, and XCP-D), and SGE
and Slurm HPC clusters. Applications to other BIDS Apps
are straightforward and can easily be achieved by creat-
ing new container configuration YAML files for those
BIDS Apps. BABS is also extensible to additional HPC
job scheduling systems beyond Slurm and SGE; we have
plans to support LSF in the future.

4.4.  User-friendly and accessible to general users

BABS provides a parsimonious set of programs for repro-
ducible image processing. With BABS, users can apply
the FAIRly big framework and reproducibly process large
datasets without requiring deep knowledge of DataLad,
which many users find challenging. Sanity checks and
test jobs included in babs-check-setup help users
detect problems before real jobs of BIDS Apps start run-
ning and fail. Handling numerous jobs on clusters is facil-
itated by babs-submit and babs-status; these
provide users with concise yet informative messages
about the jobs statuses and failed jobs audits. As such,
BABS makes the reproducible and large-scale image
processing user-friendly and accessible to both begin-
ning and advanced users.

4.5.  Limitations and future directions

It should be noted that BABS has several limitations.
First, BABS capitalizes on and supports the standard
BIDS format and BIDS Apps, and is not currently com-
patible with data in other formats, or neuroimaging soft-
ware or containers that are not compliant with the
requirements of BIDS Apps. However, BIDS data and
BIDS Apps are in wide current use. Second, currently
BABS is designed to be applied on HPC systems, and is
not compatible with cloud-based computing platforms
(e.g., AWS), local computers where a job scheduling sys-
tem or Singularity software is not installed, or computing
nodes without job scheduling systems. Compatibility to
these systems may be considered in the future. Third,
BABS currently only has command-line interfaces and
does not have a graphical user interface (GUI). However,
users who use HPC clusters should have basic skills of
using command-line programs in terminals. In addition,
given that HPC clusters often have limited bandwidth for

17

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

graphical data transmission, GUI may not be an optimal
choice for BABS.

BABS’s continued development is an ongoing, collab-
orative effort. In the future, several enhancements on the
roadmap may be added to BABS. For example, currently
the data from the input BIDS dataset(s) should be fixed
for a certain BABS project. This may not be suitable for
studies where data are still being collected. In the future,
we may add functionality to BABS so that it can accept
new subjects and/or sessions easily. Furthermore, the
interfaces with some servers like XNAT (https://www​.xnat​
.org/; Marcus et al., 2007) have not been well tested or
not fully supported yet. Such compatibility can be
requested at BABS GitHub repository (https://github​
.com​/PennLINC​/babs). In addition, as listed in the NMIND
checklist (see Supplementary Data; Kiar et al., 2023),
although BABS has achieved Silver or Bronze tiers for
documentation, infrastructure, and testing according
NMIND standards, there are still several features that
remain un-implemented. We have listed these un-
implemented features and potential enhancements on
the roadmap in a milestone on GitHub: https://github​
.com​/PennLINC​/babs​/milestone​/3. We welcome contri-
butions from researchers in the broad community via pull
requests at BABS GitHub repository (https://github​.com​
/PennLINC​/babs); developer documentation can be
found at: https://pennlinc​-babs​.readthedocs​.io​/en​/stable​
/developer​.html.

4.6.  Conclusion

BABS is a Python package that provides a reproducible
and scalable workflow for large-scale BIDS data analysis
using BIDS Apps. It provides a parsimonious set of user-
friendly programs to allow for the generalizable imple-
mentation of the FAIRly big workflow on HPC systems.
Taken together, BABS facilitates reproducible neuroim-
aging research at scale.

Data and Code Availability

BABS documentation can be found at: http://pennlinc​
-babs​.readthedocs​.io/. Code for preparing application of
BABS to the Healthy Brain Network (HBN) dataset is
available at https://github​.com​/PennLINC​/babs​_paper.
The source code of BABS is available at https://github​
.com​/PennLINC​/babs. The Python package of BABS can
be downloaded from PyPI: https://pypi​.org​/project​
/babs/. The version of BABS used for preparing the
example walkthrough and used in the application to the

HBN dataset was 0.0.3. The container image of the toy
BIDS App used in the example walkthrough is available
on Docker Hub: https://hub​.docker​.com​/r​/pennlinc​/toy​
_bids​_app. The toy BIDS dataset used in the example
walkthrough is available on OSF: https://osf​.io​/w2nu3/.
Part of the HBN dataset is available on FCP-INDI (https://
fcp​-indi​.s3​.amazonaws​.com​/index​.html​#data​/Projects​
/HBN​/BIDS​_curated/) (Richie-Halford et al., 2022).

AUTHOR CONTRIBUTIONS

Chenying Zhao: Conceptualization, Formal analysis,
Investigation, Methodology, Software, Validation, Visual-
ization, Writing—original draft, and Writing—review &
editing. Dorota Jarecka: Formal analysis, Funding acqui-
sition, Investigation, Methodology, Software, Validation,
and Writing—review & editing. Sydney Covitz: Conceptu-
alization, Data curation, Formal analysis, Methodology,
Software, Validation, and Writing—review & editing. Yibei
Chen: Validation, Writing—review & editing. Simon B.
Eickhoff: Funding acquisition, Writing—review & editing.
Damien A. Fair: Resources, Writing—review & editing.
Alexandre R. Franco: Investigation, Resources, and
Writing—review & editing. Yaroslav O. Halchenko: Fund-
ing acquisition, Methodology, Software, and Writing—
review & editing. Timothy J. Hendrickson: Resources,
Writing—review & editing. Felix Hoffstaedter: Methodol-
ogy, Software, and Writing—review & editing. Audrey
Houghton: Resources, Writing—review & editing. Greg-
ory Kiar: Funding acquisition, Investigation, Resources,
and Writing—review & editing. Austin Macdonald: Soft-
ware, Writing—review & editing. Kahini Mehta: Writing—
review & editing. Michael P. Milham: Funding acquisition,
Investigation, Resources, and Writing—review & editing.
Taylor Salo: Methodology, Software, and Writing—review
& editing. Michael Hanke: Funding acquisition, Method-
ology, Software, and Writing—review & editing. Satrajit S.
Ghosh: Funding acquisition, Methodology, Project
administration, Software, Supervision, and Writing—
review & editing. Matthew Cieslak: Conceptualization,
Data curation, Methodology, Project administration, Soft-
ware, Supervision, Visualization, and Writing—review &
editing. Theodore D. Satterthwaite: Conceptualization,
Funding acquisition, Methodology, Project administra-
tion, Software, Supervision, Visualization, Writing—
original draft, and Writing—review & editing.

DECLARATION OF COMPETING INTEREST

The authors declare no competing interests.

https://www.xnat.org/
https://www.xnat.org/
https://github.com/PennLINC/babs
https://github.com/PennLINC/babs
https://github.com/PennLINC/babs/milestone/3
https://github.com/PennLINC/babs/milestone/3
https://github.com/PennLINC/babs
https://github.com/PennLINC/babs
https://pennlinc-babs.readthedocs.io/en/stable/developer.html
https://pennlinc-babs.readthedocs.io/en/stable/developer.html
http://pennlinc-babs.readthedocs.io/
http://pennlinc-babs.readthedocs.io/
https://github.com/PennLINC/babs_paper
https://github.com/PennLINC/babs
https://github.com/PennLINC/babs
https://pypi.org/project/babs/
https://pypi.org/project/babs/
https://hub.docker.com/r/pennlinc/toy_bids_app
https://hub.docker.com/r/pennlinc/toy_bids_app
https://osf.io/w2nu3/
https://fcp-indi.s3.amazonaws.com/index.html#data/Projects/HBN/BIDS_curated/
https://fcp-indi.s3.amazonaws.com/index.html#data/Projects/HBN/BIDS_curated/
https://fcp-indi.s3.amazonaws.com/index.html#data/Projects/HBN/BIDS_curated/

18

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

ACKNOWLEDGEMENTS

This study was supported by grants from the National
Institutes of Health: R01MH112847 (T.D.S.), R01MH120482
(T.D.S.), R37MH125829 (T.D.S.), R01EB022573 (T.D.S.),
R01MH113550 (T.D.S.), RF1MH116920 (T.D.S.),
P41EB019936 (S.S.G., D.J., Y.O.H.), and RF1MH130859
(G.K., M.P.M.). S.B.E. and M.H. acknowledge funding by
the European Union’s Horizon 2020 Research and Innova-
tion Program (grant agreement 945539 (HBP SGA3)), and
the Deutsche Forschungsgemeinschaft (DFG, SFB 1451
(431549029) & IRTG 2150 (269953372)). M.H. and Y.O.H.
were supported by co-funding from the US National Sci-
ence Foundation (NSF 1912266) and German Federal Min-
istry of Education and Research (BMBF 01GQ1905).
Additional support was provided by the AE Foundation
and the Penn/CHOP Lifespan Brain Institute. We are grate-
ful for the discussions with lab members from Psychoin-
formatics lab at Research Center Jülich and Heinrich Heine
University Düsseldorf, Germany.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available with
the online version here: https://doi​.org​/10​.1162​/imag​_a​
_00074

REFERENCES

Adebimpe, A., Bertolero, M., Mehta, K., Salo, T., Murtha,
K., Cieslak, M., Meisler, S., Madison, T., Sydnor, V.,
Covitz, S., Fair, D., & Satterthwaite, T. (2023). XCP-D: A
Robust Postprocessing Pipeline of fMRI data (0.4.0rc2)
[Computer software]. Zenodo. https://doi​.org​/10​.5281​
/zenodo​.7717239

Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre,
K., Mangone, A., Vega-Potler, N., Langer, N., Alexander,
A., Kovacs, M., Litke, S., O’Hagan, B., Andersen, J.,
Bronstein, B., Bui, A., Bushey, M., Butler, H., Castagna,
V., Camacho, N., … Milham, M. P. (2017). An open
resource for transdiagnostic research in pediatric mental
health and learning disorders. Scientific Data, 4(1),
170181. https://doi​.org​/10​.1038​/sdata​.2017​.181

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber,
A., Huber, J., Johannesson, M., Kirchler, M., Iwanir, R.,
Mumford, J. A., Adcock, R. A., Avesani, P., Baczkowski,
B. M., Bajracharya, A., Bakst, L., Ball, S., Barilari, M.,
Bault, N., Beaton, D., Beitner, J., … Schonberg, T.
(2020). Variability in the analysis of a single neuroimaging
dataset by many teams. Nature, 582(7810), 84–88.
https://doi​.org​/10​.1038​/s41586​-020​-2314​-9

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A.,
Flint, J., Robinson, E. S. J. & Munafò, M. R. (2013).
Power failure: Why small sample size undermines the
reliability of neuroscience. Nature Reviews Neuroscience,
14(5), 365–376. https://doi​.org​/10​.1038​/nrn3475

Cieslak, M., Cook, P. A., He, X., Yeh, F. C., Dhollander, T.,
Adebimpe, A., Aguirre, G. K., Bassett, D. S., Betzel, R. F.,

Bourque, J., Cabral, L. M., Davatzikos, C., Detre, J. A.,
Earl, E., Elliott, M. A., Fadnavis, S., Fair, D. A., Foran, W.,
Fotiadis, P., … Satterthwaite, T. D. (2021). QSIPrep: An
integrative platform for preprocessing and reconstructing
diffusion MRI data. Nature Methods, 18(7), 775–778.
https://doi​.org​/10​.1038​/s41592​-021​-01185​-5

Ciric, R., Rosen, A. F. G., Erus, G., Cieslak, M., Adebimpe,
A., Cook, P. A., Bassett, D. S., Davatzikos, C., Wolf, D. H.
& Satterthwaite, T. D. (2018). Mitigating head motion
artifact in functional connectivity MRI. Nature Protocols,
13(12), 2801–2826. https://doi​.org​/10​.1038​/s41596​-018​
-0065​-y

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A.,
Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M.,
DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J.,
Durnez, J., Poldrack, R. A. & Gorgolewski, K. J. (2019).
FMRIPrep: A robust preprocessing pipeline for functional
MRI. Nature Methods, 16(1), 111–116. https://doi​.org​/10​
.1038​/s41592​-018​-0235​-4

Esteban, O., Ciric, R., Finc, K., Blair, R. W., Markiewicz,
C. J., Moodie, C. A., Kent, J. D., Goncalves, M., DuPre,
E., Gomez, D. E. P., Ye, Z., Salo, T., Valabregue, R.,
Amlien, I. K., Liem, F., Jacoby, N., Stojić, H., Cieslak, M.,
Urchs, S., … Gorgolewski, K. J. (2020). Analysis of task-
based functional MRI data preprocessed with fMRIPrep.
Nature Protocols, 15(7), 2186–2202. https://doi​.org​/10​
.1038​/s41596​-020​-0327​-3

Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec,
P., Capotă, M., Chakravarty, M. M., Churchill, N. W.,
Cohen, A. L., Craddock, R. C., Devenyi, G. A., Eklund,
A., Esteban, O., Flandin, G., Ghosh, S. S., Guntupalli,
J. S., Jenkinson, M., Keshavan, A., Kiar, G., Liem, F., …
Poldrack, R. A. (2017). BIDS apps: Improving ease of
use, accessibility, and reproducibility of neuroimaging
data analysis methods. PLoS Computational Biology,
13(3), e1005209. https://doi​.org​/10​.1371​/journal​.pcbi​
.1005209

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock,
R. C., Das, S., Duff, E. P., Flandin, G., Ghosh, S. S.,
Glatard, T., Halchenko, Y. O., Handwerker, D. A., Hanke,
M., Keator, D., Li, X., Michael, Z., Maumet, C., Nichols,
B. N., Nichols, T. E., Pellman, J., … Poldrack, R. A.
(2016). The brain imaging data structure, a format for
organizing and describing outputs of neuroimaging
experiments. Scientific Data, 3(1), 160044. https://doi​.org​
/10​.1038​/sdata​.2016​.44

Halchenko, Y., Meyer, K., Poldrack, B., Solanky, D., Wagner,
A., Gors, J., MacFarlane, D., Pustina, D., Sochat,
V., Ghosh, S., Mönch, C., Markiewicz, C., Waite, L.,
Shlyakhter, I., Vega, A. de la, Hayashi, S., Häusler, C.,
Poline, J.-B., Kadelka, T., … Hanke, M. (2021). DataLad:
Distributed system for joint management of code, data,
and their relationship. Journal of Open Source Software,
6(63), 3262. https://doi​.org​/10​.21105​/joss​.03262

Kiar, G., Clucas, J., Feczko, E., Goncalves, M., Jarecka, D.,
Markiewicz, C. J., Halchenko, Y. O., Hermosillo, R., Li,
X., Miranda-Dominguez, O., Ghosh, S., Poldrack, R. A.,
Satterthwaite, T. D., Milham, M. P. & Fair, D. (2023). Align
with the NMIND consortium for better neuroimaging.
Nature Human Behaviour, 1–2. https://doi​.org​/10​.1038​
/s41562​-023​-01647​-0

Laird, A. R. (2021). Large, open datasets for human
connectomics research: Considerations for reproducible
and responsible data use. NeuroImage, 244, 118579.
https://doi​.org​/10​.1016​/j​.neuroimage​.2021​.118579

https://doi.org/10.1162/imag_a_00074
https://doi.org/10.1162/imag_a_00074
https://doi.org/10.5281/zenodo.7717239
https://doi.org/10.5281/zenodo.7717239
https://doi.org/10.1038/sdata.2017.181
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1038/nrn3475
https://doi.org/10.1038/s41592-021-01185-5
https://doi.org/10.1038/s41596-018-0065-y
https://doi.org/10.1038/s41596-018-0065-y
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41596-020-0327-3
https://doi.org/10.1038/s41596-020-0327-3
https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.21105/joss.03262
https://doi.org/10.1038/s41562-023-01647-0
https://doi.org/10.1038/s41562-023-01647-0
https://doi.org/10.1016/j.neuroimage.2021.118579

19

C. Zhao, D. Jarecka, S. Covitz et al.	 Imaging Neuroscience, Volume 2, 2024

Liu, S., Abdellaoui, A., Verweij, K. J. H. & Wingen, G. A. van.
(2023). Replicable brain–phenotype associations require
large-scale neuroimaging data. Nature Human Behaviour,
1–13. https://doi​.org​/10​.1038​/s41562​-023​-01642​-5

Maier-Hein, K. H., Neher, P. F., Houde, J.-C., Côté, M.-A.,
Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.-C.,
Lin, Y.-C., Ji, Q., Reddick, W. E., Glass, J. O., Chen,
D. Q., Feng, Y., Gao, C., Wu, Y., Ma, J., He, R., Li, Q., …
Descoteaux, M. (2017). The challenge of mapping the
human connectome based on diffusion tractography.
Nature Communications, 8(1), 1349. https://doi​.org​/10​
.1038​/s41467​-017​-01285​-x

Marcus, D. S., Olsen, T. R., Ramaratnam, M. & Buckner,
R. L. (2007). The extensible neuroimaging archive toolkit.
Neuroinformatics, 5(1), 11–33. https://doi​.org​/10​.1385​
/ni:5:1:11

Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez,
D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran,
W., Miller, R. L., Hendrickson, T. J., Malone, S. M.,
Kandala, S., Feczko, E., Miranda-Dominguez, O.,
Graham, A. M., Earl, E. A., Perrone, A. J., Cordova, M.,
Doyle, O., … Dosenbach, N. U. F. (2022). Reproducible
brain-wide association studies require thousands of
individuals. Nature, 1–7. https://doi​.org​/10​.1038​/s41586​
-022​-04492​-9

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J.,
Matthews, P. M., Munafò, M. R., Nichols, T. E., Poline,
J.-B., Vul, E. & Yarkoni, T. (2017). Scanning the horizon:
Towards transparent and reproducible neuroimaging
research. Nature Reviews Neuroscience, 18(2), 115–126.
https://doi​.org​/10​.1038​/nrn​.2016​.167

Richie-Halford, A., Cieslak, M., Ai, L., Caffarra, S., Covitz,
S., Franco, A. R., Karipidis, I. I., Kruper, J., Milham, M.,
Avelar-Pereira, B., Roy, E., Sydnor, V. J., Yeatman, J. D.,
Consortium, T. F. C. S., Abbott, N. J., Anderson, J. A. E.,
Gagana, B., Bleile, M., Bloomfield, P. S., … Rokem, A.
(2022). An analysis-ready and quality controlled
resource for pediatric brain white-matter research.
Scientific Data, 9(1), 616. https://doi​.org​/10​.1038​/
s41597​-022​-01695​-7

Wagner, A. S., Waite, L. K., Meyer, K., Heckner, M. K.,
Kadelka, T., Reuter, N., Waite, A. Q., Poldrack, B.,
Markiewicz, C. J., Halchenko, Y. O., Vavra, P., Chormai,
P., Poline, J.-B., Paas, L. K., Herholz, P., Mochalski,
L. N., Kraljevic, N., Wiersch, L., Hutton, A., … Hanke,
M. (2023). The DataLad Handbook (0.18) [Computer
software]. Zenodo. https://doi​.org​/10​.5281​/zenodo​
.3608611

Wagner, A. S., Waite, L. K., Wierzba, M., Hoffstaedter, F.,
Waite, A. Q., Poldrack, B., Eickhoff, S. B. & Hanke, M.
(2022). FAIRly big: A framework for computationally
reproducible processing of large-scale data. Scientific
Data, 9(1), 80. https://doi​.org​/10​.1038​/s41597​-022​
-01163​-2

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J.,
Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten,
J.-W., Santos, L. B. da S., Bourne, P. E., Bouwman, J.,
Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B.
(2016). The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data, 3(1),
160018. https://doi​.org​/10​.1038​/sdata​.2016​.18

https://doi.org/10.1038/s41562-023-01642-5
https://doi.org/10.1038/s41467-017-01285-x
https://doi.org/10.1038/s41467-017-01285-x
https://doi.org/10.1385/ni:5:1:11
https://doi.org/10.1385/ni:5:1:11
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/s41597-022-01695-7
https://doi.org/10.1038/s41597-022-01695-7
https://doi.org/10.5281/zenodo.3608611
https://doi.org/10.5281/zenodo.3608611
https://doi.org/10.1038/s41597-022-01163-2
https://doi.org/10.1038/s41597-022-01163-2
https://doi.org/10.1038/sdata.2016.18

