001024667 001__ 1024667
001024667 005__ 20250204113826.0
001024667 0247_ $$2doi$$a10.1002/ange.202307555
001024667 0247_ $$2ISSN$$a0932-2132
001024667 0247_ $$2ISSN$$a0044-8249
001024667 0247_ $$2ISSN$$a0932-2159
001024667 0247_ $$2ISSN$$a0170-9046
001024667 0247_ $$2ISSN$$a0170-9054
001024667 0247_ $$2ISSN$$a0932-2140
001024667 0247_ $$2ISSN$$a1521-3757
001024667 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02340
001024667 037__ $$aFZJ-2024-02340
001024667 082__ $$a660
001024667 1001_ $$00009-0009-7212-978X$$aBestsennaia, Ekaterina$$b0
001024667 245__ $$aChannelrhodopsin‐2 Oligomerization in Cell Membrane Revealed by Photo‐Activated Localization Microscopy
001024667 260__ $$aWeinheim$$bWiley-VCH$$c2024
001024667 3367_ $$2DRIVER$$aarticle
001024667 3367_ $$2DataCite$$aOutput Types/Journal article
001024667 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712751892_24400
001024667 3367_ $$2BibTeX$$aARTICLE
001024667 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024667 3367_ $$00$$2EndNote$$aJournal Article
001024667 500__ $$aWe are thankful to Fedor Tsybrov for the help with thepreparation of plasmids. V.B. acknowledges DAAD YoungTalents Programme Line A. V.G. acknowledges his HGFProfessorship. I.M. acknowledges FWO Research FoundationFlanders (G0B9922N) and BOF UHasselt(BOF21BL11). C.C., C.K. and M.H. gratefully acknowledgethe Deutsche Forschungsgemeinschaft (grants CRC1507 andCRC807) for financial support. The work was done in theframework of CEA(IBS)–HGF(FZJ) STC 5.1 specific agreement.Open Access funding enabled and organized byProjekt DEAL.
001024667 520__ $$aMicrobial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment. Fluorescence microscopy provides powerful tools to determine the oligomeric state of membrane proteins directly in cells. Among these methods is quantitative photoactivated localization microscopy (qPALM) allowing the investigation of molecular organization at the level of single protein clusters. Here, we apply qPALM to investigate the oligomeric state of the first and most used optogenetic tool Channelrhodopsin-2 (ChR2) in the plasma membrane of eukaryotic cells. ChR2 appeared predominantly as a dimer in the cell membrane and did not form higher oligomers. The disulfide bonds between Cys34 and Cys36 of adjacent ChR2 monomers were not required for dimer formation and mutations disrupting these bonds resulted in only partial monomerization of ChR2. The monomeric fraction increased when the total concentration of mutant ChR2 in the membrane was low. The dissociation constant was estimated for this partially monomerized mutant ChR2 as 2.2±0.9 proteins/μm2. Our findings are important for understanding the mechanistic basis of ChR2 activity as well as for improving existing and developing future optogenetic tools.
001024667 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001024667 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024667 7001_ $$00000-0003-3371-4416$$aMaslov, Ivan$$b1
001024667 7001_ $$0P:(DE-Juel1)131949$$aBalandin, Taras$$b2
001024667 7001_ $$0P:(DE-Juel1)169221$$aAlekseev, Alexey$$b3
001024667 7001_ $$00000-0002-3115-0015$$aYudenko, Anna$$b4
001024667 7001_ $$0P:(DE-Juel1)185819$$aAbu Shamseye, Assalla$$b5
001024667 7001_ $$0P:(DE-Juel1)176570$$aZabelskii, Dmitrii$$b6
001024667 7001_ $$0P:(DE-Juel1)131911$$aBaumann, Arnd$$b7
001024667 7001_ $$0P:(DE-HGF)0$$aCatapano, Claudia$$b8
001024667 7001_ $$0P:(DE-HGF)0$$aKarathanasis, Christos$$b9
001024667 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b10
001024667 7001_ $$00000-0002-9821-3578$$aHeilemann, Mike$$b11
001024667 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b12$$eCorresponding author
001024667 7001_ $$0P:(DE-Juel1)179072$$aBorshchevskiy, Valentin$$b13$$eCorresponding author
001024667 773__ $$0PERI:(DE-600)1479266-7$$a10.1002/ange.202307555$$gVol. 136, no. 11, p. e202307555$$n11$$pe202307555$$tAngewandte Chemie$$v136$$x0932-2132$$y2024
001024667 8564_ $$uhttps://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.pdf$$yOpenAccess
001024667 8564_ $$uhttps://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.gif?subformat=icon$$xicon$$yOpenAccess
001024667 8564_ $$uhttps://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024667 8564_ $$uhttps://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024667 8564_ $$uhttps://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024667 909CO $$ooai:juser.fz-juelich.de:1024667$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024667 9101_ $$0I:(DE-588b)5008462-8$$60009-0009-7212-978X$$aForschungszentrum Jülich$$b0$$kFZJ
001024667 9101_ $$0I:(DE-HGF)0$$60009-0009-7212-978X$$a IBI-1$$b0
001024667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131949$$aForschungszentrum Jülich$$b2$$kFZJ
001024667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185819$$aForschungszentrum Jülich$$b5$$kFZJ
001024667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131911$$aForschungszentrum Jülich$$b7$$kFZJ
001024667 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131911$$a IBI-1$$b7
001024667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b10$$kFZJ
001024667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich$$b12$$kFZJ
001024667 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001024667 9141_ $$y2024
001024667 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024667 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-23$$wger
001024667 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024667 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
001024667 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001024667 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001024667 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-17
001024667 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-17
001024667 920__ $$lyes
001024667 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
001024667 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
001024667 980__ $$ajournal
001024667 980__ $$aVDB
001024667 980__ $$aUNRESTRICTED
001024667 980__ $$aI:(DE-Juel1)IBI-1-20200312
001024667 980__ $$aI:(DE-Juel1)IBI-7-20200312
001024667 9801_ $$aFullTexts