001     1024667
005     20250204113826.0
024 7 _ |a 10.1002/ange.202307555
|2 doi
024 7 _ |a 0932-2132
|2 ISSN
024 7 _ |a 0044-8249
|2 ISSN
024 7 _ |a 0932-2159
|2 ISSN
024 7 _ |a 0170-9046
|2 ISSN
024 7 _ |a 0170-9054
|2 ISSN
024 7 _ |a 0932-2140
|2 ISSN
024 7 _ |a 1521-3757
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02340
|2 datacite_doi
037 _ _ |a FZJ-2024-02340
082 _ _ |a 660
100 1 _ |a Bestsennaia, Ekaterina
|0 0009-0009-7212-978X
|b 0
245 _ _ |a Channelrhodopsin‐2 Oligomerization in Cell Membrane Revealed by Photo‐Activated Localization Microscopy
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712751892_24400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a We are thankful to Fedor Tsybrov for the help with thepreparation of plasmids. V.B. acknowledges DAAD YoungTalents Programme Line A. V.G. acknowledges his HGFProfessorship. I.M. acknowledges FWO Research FoundationFlanders (G0B9922N) and BOF UHasselt(BOF21BL11). C.C., C.K. and M.H. gratefully acknowledgethe Deutsche Forschungsgemeinschaft (grants CRC1507 andCRC807) for financial support. The work was done in theframework of CEA(IBS)–HGF(FZJ) STC 5.1 specific agreement.Open Access funding enabled and organized byProjekt DEAL.
520 _ _ |a Microbial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment. Fluorescence microscopy provides powerful tools to determine the oligomeric state of membrane proteins directly in cells. Among these methods is quantitative photoactivated localization microscopy (qPALM) allowing the investigation of molecular organization at the level of single protein clusters. Here, we apply qPALM to investigate the oligomeric state of the first and most used optogenetic tool Channelrhodopsin-2 (ChR2) in the plasma membrane of eukaryotic cells. ChR2 appeared predominantly as a dimer in the cell membrane and did not form higher oligomers. The disulfide bonds between Cys34 and Cys36 of adjacent ChR2 monomers were not required for dimer formation and mutations disrupting these bonds resulted in only partial monomerization of ChR2. The monomeric fraction increased when the total concentration of mutant ChR2 in the membrane was low. The dissociation constant was estimated for this partially monomerized mutant ChR2 as 2.2±0.9 proteins/μm2. Our findings are important for understanding the mechanistic basis of ChR2 activity as well as for improving existing and developing future optogenetic tools.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Maslov, Ivan
|0 0000-0003-3371-4416
|b 1
700 1 _ |a Balandin, Taras
|0 P:(DE-Juel1)131949
|b 2
700 1 _ |a Alekseev, Alexey
|0 P:(DE-Juel1)169221
|b 3
700 1 _ |a Yudenko, Anna
|0 0000-0002-3115-0015
|b 4
700 1 _ |a Abu Shamseye, Assalla
|0 P:(DE-Juel1)185819
|b 5
700 1 _ |a Zabelskii, Dmitrii
|0 P:(DE-Juel1)176570
|b 6
700 1 _ |a Baumann, Arnd
|0 P:(DE-Juel1)131911
|b 7
700 1 _ |a Catapano, Claudia
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Karathanasis, Christos
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gordeliy, Valentin
|0 P:(DE-Juel1)131964
|b 10
700 1 _ |a Heilemann, Mike
|0 0000-0002-9821-3578
|b 11
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 12
|e Corresponding author
700 1 _ |a Borshchevskiy, Valentin
|0 P:(DE-Juel1)179072
|b 13
|e Corresponding author
773 _ _ |a 10.1002/ange.202307555
|g Vol. 136, no. 11, p. e202307555
|0 PERI:(DE-600)1479266-7
|n 11
|p e202307555
|t Angewandte Chemie
|v 136
|y 2024
|x 0932-2132
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024667/files/angewandte%20Chemie_Gensch%2C%20Betsennaia%2C%20Abu%20Shamseye_02_2024.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024667
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 0009-0009-7212-978X
910 1 _ |a IBI-1
|0 I:(DE-HGF)0
|b 0
|6 0009-0009-7212-978X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131949
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)185819
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131911
910 1 _ |a IBI-1
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)131911
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131964
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131924
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21