001024669 001__ 1024669
001024669 005__ 20250203103141.0
001024669 0247_ $$2doi$$a10.1016/j.celrep.2023.112136
001024669 0247_ $$2ISSN$$a2211-1247
001024669 0247_ $$2ISSN$$a2639-1856
001024669 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02342
001024669 0247_ $$2pmid$$a36807145
001024669 0247_ $$2WOS$$aWOS:000948567400001
001024669 037__ $$aFZJ-2024-02342
001024669 082__ $$a610
001024669 1001_ $$0P:(DE-HGF)0$$aMeirhaeghe, Nicolas$$b0$$eCorresponding author
001024669 245__ $$aParallel movement planning is achieved via an optimal preparatory state in motor cortex
001024669 260__ $$a[New York, NY]$$bElsevier$$c2023
001024669 3367_ $$2DRIVER$$aarticle
001024669 3367_ $$2DataCite$$aOutput Types/Journal article
001024669 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712652429_29219
001024669 3367_ $$2BibTeX$$aARTICLE
001024669 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024669 3367_ $$00$$2EndNote$$aJournal Article
001024669 520__ $$aHow do patterns of neural activity in the motor cortex contribute to the planning of a movement? A recent theory developed for single movements proposes that the motor cortex acts as a dynamical system whose initial state is optimized during the preparatory phase of the movement. This theory makes important yet untested predictions about preparatory dynamics in more complex behavioral settings. Here, we analyze preparatory activity in non-human primates planning not one but two movements simultaneously. As predicted by the theory, we find that parallel planning is achieved by adjusting preparatory activity within an optimal subspace to an intermediate state reflecting a trade-off between the two movements. The theory quantitatively accounts for the relationship between this intermediate state and fluctuations in the animals’ behavior down at the trial level. These results uncover a simple mechanism for planning multiple movements in parallel and further point to motor planning as a controlled dynamical process.
001024669 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001024669 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
001024669 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024669 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b1
001024669 7001_ $$0P:(DE-HGF)0$$aBrochier, Thomas$$b2
001024669 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2023.112136$$gVol. 42, no. 2, p. 112136 -$$n2$$p112136$$tCell reports$$v42$$x2211-1247$$y2023
001024669 8564_ $$uhttps://juser.fz-juelich.de/record/1024669/files/1-s2.0-S221112472300147X-main.pdf$$yOpenAccess
001024669 8564_ $$uhttps://juser.fz-juelich.de/record/1024669/files/1-s2.0-S221112472300147X-main.gif?subformat=icon$$xicon$$yOpenAccess
001024669 8564_ $$uhttps://juser.fz-juelich.de/record/1024669/files/1-s2.0-S221112472300147X-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024669 8564_ $$uhttps://juser.fz-juelich.de/record/1024669/files/1-s2.0-S221112472300147X-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024669 8564_ $$uhttps://juser.fz-juelich.de/record/1024669/files/1-s2.0-S221112472300147X-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024669 909CO $$ooai:juser.fz-juelich.de:1024669$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b1$$kFZJ
001024669 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001024669 9141_ $$y2024
001024669 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-26
001024669 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001024669 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2022$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:49:39Z
001024669 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:49:39Z
001024669 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024669 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:49:39Z
001024669 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2022$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001024669 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001024669 920__ $$lno
001024669 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001024669 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001024669 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001024669 980__ $$ajournal
001024669 980__ $$aVDB
001024669 980__ $$aUNRESTRICTED
001024669 980__ $$aI:(DE-Juel1)INM-6-20090406
001024669 980__ $$aI:(DE-Juel1)IAS-6-20130828
001024669 980__ $$aI:(DE-Juel1)INM-10-20170113
001024669 9801_ $$aFullTexts