001024672 001__ 1024672
001024672 005__ 20250204113826.0
001024672 0247_ $$2doi$$a10.3390/s24061720
001024672 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02345
001024672 0247_ $$2pmid$$a38543984
001024672 0247_ $$2WOS$$aWOS:001192660400001
001024672 037__ $$aFZJ-2024-02345
001024672 041__ $$aEnglish
001024672 082__ $$a620
001024672 1001_ $$0P:(DE-Juel1)178633$$aBoomers, Ann Katrin$$b0$$eCorresponding author
001024672 245__ $$aHow Approaching Angle, Bottleneck Width and Walking Speed Affect the Use of a Bottleneck by Individuals
001024672 260__ $$aBasel$$bMDPI$$c2024
001024672 3367_ $$2DRIVER$$aarticle
001024672 3367_ $$2DataCite$$aOutput Types/Journal article
001024672 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712761900_24402
001024672 3367_ $$2BibTeX$$aARTICLE
001024672 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024672 3367_ $$00$$2EndNote$$aJournal Article
001024672 520__ $$aUnderstanding pedestrian dynamics at bottlenecks and how pedestrians interact with their environment—particularly how they use and move in the space available to them—is of safety importance, since bottlenecks are a key point for pedestrian flow. We performed a series of experiments in which participants walked through a bottleneck individually for varying combinations of approaching angle, bottleneck width and walking speed, to investigate the dependence of the movement on safety-relevant influencing factors. Trajectories as well as 3D motion data were recorded for every participant. This paper shows that (1) the maximum amplitude of shoulder rotation is mainly determined by the ratio of the bottleneck width to the shoulder width of the participant, while the direction is determined by the starting angle and the foot position; (2) the ‘critical point’ is not invariant to the starting angle and walking speed; (3) differences between the maximum and minimum speed values arise mainly from the distribution of deceleration patterns; and (4) the position of crossing shifts by 1.75 cm/10 cm, increasing the bottleneck width in the direction of origin.
001024672 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001024672 536__ $$0G:(DE-Juel-1)BMBF-DB001534$$aCroma - Crowd Management in Transport Infrastructures (BMBF-DB001534)$$cBMBF-DB001534$$x1
001024672 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024672 7001_ $$0P:(DE-Juel1)132064$$aBoltes, Maik$$b1
001024672 7001_ $$0P:(DE-HGF)0$$aKersting, Uwe G.$$b2
001024672 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s24061720$$gVol. 24, no. 6, p. 1720 -$$n6$$p1720$$tSensors$$v24$$x1424-8220$$y2024
001024672 8564_ $$uhttps://juser.fz-juelich.de/record/1024672/files/sensors-24-01720.pdf$$yOpenAccess
001024672 8564_ $$uhttps://juser.fz-juelich.de/record/1024672/files/sensors-24-01720.gif?subformat=icon$$xicon$$yOpenAccess
001024672 8564_ $$uhttps://juser.fz-juelich.de/record/1024672/files/sensors-24-01720.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024672 8564_ $$uhttps://juser.fz-juelich.de/record/1024672/files/sensors-24-01720.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024672 8564_ $$uhttps://juser.fz-juelich.de/record/1024672/files/sensors-24-01720.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024672 909CO $$ooai:juser.fz-juelich.de:1024672$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178633$$aForschungszentrum Jülich$$b0$$kFZJ
001024672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132064$$aForschungszentrum Jülich$$b1$$kFZJ
001024672 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001024672 9141_ $$y2024
001024672 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001024672 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024672 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001024672 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-24
001024672 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024672 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-24
001024672 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2022$$d2024-12-18
001024672 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001024672 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001024672 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:28:10Z
001024672 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:28:10Z
001024672 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:28:10Z
001024672 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001024672 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001024672 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001024672 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001024672 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-18
001024672 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001024672 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001024672 920__ $$lyes
001024672 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001024672 980__ $$ajournal
001024672 980__ $$aVDB
001024672 980__ $$aUNRESTRICTED
001024672 980__ $$aI:(DE-Juel1)IAS-7-20180321
001024672 9801_ $$aFullTexts