001024674 001__ 1024674
001024674 005__ 20250817202231.0
001024674 0247_ $$2doi$$a10.1002/adem.202302146
001024674 0247_ $$2ISSN$$a1438-1656
001024674 0247_ $$2ISSN$$a1527-2648
001024674 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02347
001024674 0247_ $$2WOS$$aWOS:001196049700001
001024674 037__ $$aFZJ-2024-02347
001024674 082__ $$a660
001024674 1001_ $$0P:(DE-Juel1)180853$$aPark, Junbeom$$b0$$eFirst author
001024674 245__ $$aTitanium Nitride Microelectrode: A New Candidate for In Situ Electrochemical Transmission Electron Microscopy Study
001024674 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2024
001024674 3367_ $$2DRIVER$$aarticle
001024674 3367_ $$2DataCite$$aOutput Types/Journal article
001024674 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736323582_5690
001024674 3367_ $$2BibTeX$$aARTICLE
001024674 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024674 3367_ $$00$$2EndNote$$aJournal Article
001024674 520__ $$aIn situ transmission electron microscopy (TEM) is increasingly utilized by researchers to explore various electrochemical applications in the quest to address climate change, aiming to comprehend underlying mechanisms and enhance performance. However, the conventional Pt microelectrode commonly used in in situ TEM poses limitations due to its low electron transparency and high catalytic activity. In this study, titanium nitride (TiNx) is introduced as a novel microelectrode material that can be fabricated following typical cleanroom processes. Through in situ Zn and Cu electrodeposition studies, it is shown how the low catalytic activity and higher electron transparency of TiNx enable obtaining stable electrochemical cycling and quantify the deposition on top of microelectrode in TEM mode, highlighting the benefit of TiNx microelectrodes for different in situ TEM studies.
001024674 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001024674 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024674 7001_ $$0P:(DE-HGF)0$$aCheng, Ningyan$$b1
001024674 7001_ $$0P:(DE-HGF)0$$aGe, Binghui$$b2
001024674 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b3
001024674 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b4
001024674 7001_ $$0P:(DE-HGF)0$$aPivak, Yevheniy$$b5
001024674 7001_ $$00000-0002-5072-7019$$aSun, Hongyu$$b6$$eCorresponding author
001024674 7001_ $$00000-0002-5597-7914$$aGarza, Héctor Hugo Pérez$$b7$$eCorresponding author
001024674 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b8$$eCorresponding author
001024674 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b9
001024674 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.202302146$$gp. 2302146$$n10$$p2302146$$tAdvanced engineering materials$$v26$$x1438-1656$$y2024
001024674 8564_ $$uhttps://juser.fz-juelich.de/record/1024674/files/Adv%20Eng%20Mater%20-%202024%20-%20Park%20-%20Titanium%20Nitride%20Microelectrode%20A%20New%20Candidate%20for%20In%20Situ%20Electrochemical%20Transmission.pdf$$yOpenAccess
001024674 8767_ $$d2025-08-17$$eHybrid-OA$$jDEAL
001024674 909CO $$ooai:juser.fz-juelich.de:1024674$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001024674 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180853$$aForschungszentrum Jülich$$b0$$kFZJ
001024674 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Anhui University$$b1
001024674 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Anhui University$$b2
001024674 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b3$$kFZJ
001024674 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b4$$kFZJ
001024674 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDENSsolutions B.V.$$b5
001024674 9101_ $$0I:(DE-HGF)0$$60000-0002-5072-7019$$a DENSsolutions B.V.$$b6
001024674 9101_ $$0I:(DE-HGF)0$$60000-0002-5597-7914$$a DENSsolutions B.V.$$b7
001024674 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b8$$kFZJ
001024674 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b9$$kFZJ
001024674 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b9$$kRWTH
001024674 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001024674 9141_ $$y2024
001024674 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001024674 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024674 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-19$$wger
001024674 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001024674 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024674 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENG MATER : 2022$$d2024-12-12
001024674 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001024674 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001024674 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001024674 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12
001024674 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001024674 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-12
001024674 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001024674 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001024674 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001024674 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001024674 920__ $$lyes
001024674 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001024674 9801_ $$aFullTexts
001024674 980__ $$ajournal
001024674 980__ $$aVDB
001024674 980__ $$aUNRESTRICTED
001024674 980__ $$aI:(DE-Juel1)IEK-9-20110218
001024674 980__ $$aAPC
001024674 981__ $$aI:(DE-Juel1)IET-1-20110218