001     1024674
005     20250817202231.0
024 7 _ |a 10.1002/adem.202302146
|2 doi
024 7 _ |a 1438-1656
|2 ISSN
024 7 _ |a 1527-2648
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02347
|2 datacite_doi
024 7 _ |a WOS:001196049700001
|2 WOS
037 _ _ |a FZJ-2024-02347
082 _ _ |a 660
100 1 _ |a Park, Junbeom
|0 P:(DE-Juel1)180853
|b 0
|e First author
245 _ _ |a Titanium Nitride Microelectrode: A New Candidate for In Situ Electrochemical Transmission Electron Microscopy Study
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736323582_5690
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In situ transmission electron microscopy (TEM) is increasingly utilized by researchers to explore various electrochemical applications in the quest to address climate change, aiming to comprehend underlying mechanisms and enhance performance. However, the conventional Pt microelectrode commonly used in in situ TEM poses limitations due to its low electron transparency and high catalytic activity. In this study, titanium nitride (TiNx) is introduced as a novel microelectrode material that can be fabricated following typical cleanroom processes. Through in situ Zn and Cu electrodeposition studies, it is shown how the low catalytic activity and higher electron transparency of TiNx enable obtaining stable electrochemical cycling and quantify the deposition on top of microelectrode in TEM mode, highlighting the benefit of TiNx microelectrodes for different in situ TEM studies.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cheng, Ningyan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ge, Binghui
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jodat, Eva
|0 P:(DE-Juel1)161579
|b 3
700 1 _ |a Karl, André
|0 P:(DE-Juel1)191359
|b 4
700 1 _ |a Pivak, Yevheniy
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sun, Hongyu
|0 0000-0002-5072-7019
|b 6
|e Corresponding author
700 1 _ |a Garza, Héctor Hugo Pérez
|0 0000-0002-5597-7914
|b 7
|e Corresponding author
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 8
|e Corresponding author
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 9
773 _ _ |a 10.1002/adem.202302146
|g p. 2302146
|0 PERI:(DE-600)2016980-2
|n 10
|p 2302146
|t Advanced engineering materials
|v 26
|y 2024
|x 1438-1656
856 4 _ |u https://juser.fz-juelich.de/record/1024674/files/Adv%20Eng%20Mater%20-%202024%20-%20Park%20-%20Titanium%20Nitride%20Microelectrode%20A%20New%20Candidate%20for%20In%20Situ%20Electrochemical%20Transmission.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1024674
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180853
910 1 _ |a Anhui University
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Anhui University
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161579
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)191359
910 1 _ |a DENSsolutions B.V.
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a DENSsolutions B.V.
|0 I:(DE-HGF)0
|b 6
|6 0000-0002-5072-7019
910 1 _ |a DENSsolutions B.V.
|0 I:(DE-HGF)0
|b 7
|6 0000-0002-5597-7914
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 9
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENG MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21