001     1024677
005     20250204113826.0
024 7 _ |a 10.1016/j.jpowsour.2024.234394
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02350
|2 datacite_doi
024 7 _ |a WOS:001218339700001
|2 WOS
037 _ _ |a FZJ-2024-02350
082 _ _ |a 620
100 1 _ |a Wang, Chih-Chieh
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Grain boundary complexion modification for interface stability in garnet based solid-state Li batteries
260 _ _ |a New York, NY [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713364749_6813
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The garnet type solid-state electrolyte (SSE) encounters challenges related to poor interfacial contact with Li metal and dendrite penetration problem. This study addresses these issues by manipulating the surface property of garnet-based LLZTO (Li6.5La3Zr1.6Ta0.4O12) SSE. The manipulation is achieved by varying thickness of Al2O3 atomic layer deposition (ALD), followed by sintering. Research results show that the relative density, ionic conductivity, and hardness of LLZTO are improved while electronic conductivity is reduced due to the formation of multiple complexions at grain boundary (GB). The SSE pellets also demonstrate improved wettability with Li metal, leading to stable galvanostatic Li plating/stripping cycling with low polarization, which allows for batter battery performance than pristine one. The concept of modifying SSE through the grain boundary complexion modification by thin ALD coating for enhancing the dendrite tolerance with better electrochemical properties of SSE may open a new direction for solid state battery research.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hsu, Wei-Chun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chang, Chia-Yu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ihrig, Martin
|0 P:(DE-Juel1)174298
|b 3
700 1 _ |a Thuy Tran, Ngoc Thanh
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lin, Shih-kang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)188297
|b 6
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 7
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 8
|u fzj
700 1 _ |a Chiu, Kuo-Feng
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1016/j.jpowsour.2024.234394
|g Vol. 602, p. 234394 -
|0 PERI:(DE-600)1491915-1
|p 234394 -
|t Journal of power sources
|v 602
|y 2024
|x 0378-7753
856 4 _ |u https://doi.org/10.1016/j.jpowsour.2024.234394
856 4 _ |u https://juser.fz-juelich.de/record/1024677/files/SSE-LLZO-ALD-20231012-FINAL-Long.docx
|y Published on 2024-03-23. Available in OpenAccess from 2026-03-23.
856 4 _ |u https://juser.fz-juelich.de/record/1024677/files/Supporting%20information-20231012-FINAL-Long.docx
|y Published on 2024-03-23. Available in OpenAccess from 2026-03-23.
909 C O |o oai:juser.fz-juelich.de:1024677
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)188297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21