001     1024683
005     20250203103143.0
024 7 _ |a 10.1039/D2EE02998G
|2 doi
024 7 _ |a 1754-5692
|2 ISSN
024 7 _ |a 1754-5706
|2 ISSN
024 7 _ |a WOS:000892830100001
|2 WOS
037 _ _ |a FZJ-2024-02356
082 _ _ |a 690
100 1 _ |a Zhang, Heng
|0 0000-0002-8811-6336
|b 0
|e Corresponding author
245 _ _ |a From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives
260 _ _ |a Cambridge
|c 2023
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712751066_24400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Since the oil crisis in the 1970s, the importance of rechargeable batteries has been noted by both academia and industry. This has become more prominent with the increasing demand in e-mobility and integration of renewable sources in the energy ecosystem. However, despite the great success of lithium-ion batteries in portable consumer electronics and the above-mentioned domains, it is challenging to further expand their use to large-volume technical applications due to the limited resources of some key elements (lithium, cobalt, etc.). Accordingly, emerging mono-valent (e.g., sodium and potassium) and multi-valent (magnesium, calcium, zinc, aluminum, etc.) batteries are expected to overcome the resource limitation and related challenges. Herein, we present the historical development of non-aqueous organic electrolytes and electrode–electrolyte interphases and focus on the similarities and differences between lithium-based batteries and other complementary emerging battery technologies. Special attention is paid to some basic parameters related to solvents and salts, including donor numbers and Eigen values, to better understand the transport behavior in the bulk electrolyte. Moreover, key parameters impacting the features of the electrode–electrolyte interphase are critically analyzed for each battery configuration. Additionally, we discuss the possible strategies to enhance the physical (e.g., transport behavior and mechanical properties) and (electro)chemical properties of electrolytes and interphases, aiming at promoting the development of sustainable and high-performance mono- and multi-valent batteries for practical applications. Particularly, it is scrutinized whether the accumulated facts with respect to lithium can be smoothly transferred to other emerging battery systems or not.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Qiao, Lixin
|b 1
700 1 _ |a Kühnle, Hannes
|0 0000-0002-5227-3540
|b 2
700 1 _ |a Figgemeier, Egbert
|0 P:(DE-Juel1)165182
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Armand, Michel
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Eshetu, Gebrekidan Gebresilassie
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1039/D2EE02998G
|g Vol. 16, no. 1, p. 11 - 52
|0 PERI:(DE-600)2439879-2
|n 1
|p 11 - 52
|t Energy & environmental science
|v 16
|y 2023
|x 1754-5692
856 4 _ |u https://juser.fz-juelich.de/record/1024683/files/Submitted%20PDF.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024683/files/Submitted%20PDF.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024683/files/Submitted%20PDF.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024683/files/Submitted%20PDF.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024683/files/Submitted%20PDF.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1024683
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-8811-6336
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165182
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG ENVIRON SCI : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b ENERG ENVIRON SCI : 2022
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21