001024689 001__ 1024689
001024689 005__ 20250204113826.0
001024689 0247_ $$2ISSN$$a0006-3495
001024689 0247_ $$2ISSN$$a1542-0086
001024689 037__ $$aFZJ-2024-02362
001024689 082__ $$a570
001024689 1001_ $$0P:(DE-Juel1)169976$$aAlfonso-Prieto, Mercedes$$b0$$eCorresponding author$$ufzj
001024689 1112_ $$aBiophysical Society Meeting$$cPhiladelphia$$d2024-02-10 - 2024-02-14$$wUSA
001024689 245__ $$aMolecular insights into the neuroprotective effects of chlorogenic acids mediated by the peroxisome proliferator-activated receptor PPARalpha
001024689 260__ $$c2024
001024689 3367_ $$033$$2EndNote$$aConference Paper
001024689 3367_ $$2BibTeX$$aINPROCEEDINGS
001024689 3367_ $$2DRIVER$$aconferenceObject
001024689 3367_ $$2ORCID$$aCONFERENCE_POSTER
001024689 3367_ $$2DataCite$$aOutput Types/Conference Poster
001024689 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1721124944_10765$$xAfter Call
001024689 520__ $$aThe peroxisome proliferator-activated receptor PPARalpha has been associated to neuroprotection against Parkinson’s and Alzheimer’s diseases [1]. PPARalpha binds a wide variety of ligands [2], including FDA-approved drugs, suggesting that PPARalpha could be used as an alternative therapeutic target against neurodegeneration. Endogenous ligands of PPARalpha include fatty acids (such as oleic acid, whose concentration is pathologically increased in several neurodegenerative diseases) and their derivatives (such as OLHA, the conjugate of oleic acid and histamine) [3]. In addition, PPARalpha exogenous ligands span from drugs against diabetes and hyperlipidemia to food molecules, such as cinnamic acid [4-5] and the closely related chlorogenic acids (CGAs). Using molecular simulations, we have investigated the binding determinants of CGA-related compounds. Our computational results, in combination with experiments on brain slices, show that these novel PPARalpha ligands could bind to the receptor similarly to known endogenous agonists and drugs. In the long term, this molecular information may be used as a stepping stone for designing PPARalpha-based neuroprotective therapies.[1] Willems S. et al. (2021) J. Med. Chem. 64:9592–9638.[2] Kamata S. et al. (2020) iScience 23:101727.[3] Sergeeva O.A. (2022) Neuropharmacology 215:109167.[4] Chandra S. et al. (2019) Neurobiol. Dis. 124:379–395.[5] Prorok T. et al. (2019) Neurochem. Res. 44(4):751–762.
001024689 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001024689 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001024689 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024689 7001_ $$0P:(DE-Juel1)180682$$aMüller, Nicolas$$b1$$ufzj
001024689 7001_ $$0P:(DE-HGF)0$$aSergeeva, Olga A.$$b2
001024689 7001_ $$0P:(DE-HGF)0$$aNavarini, Luciano$$b3
001024689 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b4$$ufzj
001024689 773__ $$0PERI:(DE-600)1477214-0$$gVol. 123, no. 3, p. 185a -$$x0006-3495$$y2024
001024689 8564_ $$uhttps://www.cell.com/biophysj/pdf/S0006-3495(23)01902-1.pdf
001024689 909CO $$ooai:juser.fz-juelich.de:1024689$$pVDB
001024689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169976$$aForschungszentrum Jülich$$b0$$kFZJ
001024689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180682$$aForschungszentrum Jülich$$b1$$kFZJ
001024689 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aHeinrich Heine Universität Düsseldorf$$b2
001024689 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$ailly caffè S.p.A.$$b3
001024689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b4$$kFZJ
001024689 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001024689 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001024689 9141_ $$y2024
001024689 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001024689 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
001024689 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001024689 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001024689 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001024689 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001024689 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-21
001024689 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-21
001024689 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001024689 920__ $$lyes
001024689 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
001024689 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
001024689 980__ $$aposter
001024689 980__ $$aVDB
001024689 980__ $$aI:(DE-Juel1)IAS-5-20120330
001024689 980__ $$aI:(DE-Juel1)INM-9-20140121
001024689 980__ $$aUNRESTRICTED