001     1024689
005     20250204113826.0
024 7 _ |a 0006-3495
|2 ISSN
024 7 _ |a 1542-0086
|2 ISSN
037 _ _ |a FZJ-2024-02362
082 _ _ |a 570
100 1 _ |a Alfonso-Prieto, Mercedes
|0 P:(DE-Juel1)169976
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Biophysical Society Meeting
|c Philadelphia
|d 2024-02-10 - 2024-02-14
|w USA
245 _ _ |a Molecular insights into the neuroprotective effects of chlorogenic acids mediated by the peroxisome proliferator-activated receptor PPARalpha
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1721124944_10765
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The peroxisome proliferator-activated receptor PPARalpha has been associated to neuroprotection against Parkinson’s and Alzheimer’s diseases [1]. PPARalpha binds a wide variety of ligands [2], including FDA-approved drugs, suggesting that PPARalpha could be used as an alternative therapeutic target against neurodegeneration. Endogenous ligands of PPARalpha include fatty acids (such as oleic acid, whose concentration is pathologically increased in several neurodegenerative diseases) and their derivatives (such as OLHA, the conjugate of oleic acid and histamine) [3]. In addition, PPARalpha exogenous ligands span from drugs against diabetes and hyperlipidemia to food molecules, such as cinnamic acid [4-5] and the closely related chlorogenic acids (CGAs). Using molecular simulations, we have investigated the binding determinants of CGA-related compounds. Our computational results, in combination with experiments on brain slices, show that these novel PPARalpha ligands could bind to the receptor similarly to known endogenous agonists and drugs. In the long term, this molecular information may be used as a stepping stone for designing PPARalpha-based neuroprotective therapies.[1] Willems S. et al. (2021) J. Med. Chem. 64:9592–9638.[2] Kamata S. et al. (2020) iScience 23:101727.[3] Sergeeva O.A. (2022) Neuropharmacology 215:109167.[4] Chandra S. et al. (2019) Neurobiol. Dis. 124:379–395.[5] Prorok T. et al. (2019) Neurochem. Res. 44(4):751–762.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Müller, Nicolas
|0 P:(DE-Juel1)180682
|b 1
|u fzj
700 1 _ |a Sergeeva, Olga A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Navarini, Luciano
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 4
|u fzj
773 _ _ |y 2024
|0 PERI:(DE-600)1477214-0
|g Vol. 123, no. 3, p. 185a -
|x 0006-3495
856 4 _ |u https://www.cell.com/biophysj/pdf/S0006-3495(23)01902-1.pdf
909 C O |o oai:juser.fz-juelich.de:1024689
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180682
910 1 _ |a Heinrich Heine Universität Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a illy caffè S.p.A.
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 1
914 1 _ |y 2024
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21