001     1024690
005     20250203103143.0
024 7 _ |a 10.1101/2023.02.22.529484
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02363
|2 datacite_doi
037 _ _ |a FZJ-2024-02363
082 _ _ |a 570
100 1 _ |a Alfonso-Prieto, Mercedes
|0 P:(DE-Juel1)169976
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Machine Learning-based Modeling of Olfactory Receptors in their Inactive State: Human OR51E2 as a Case Study
260 _ _ |a Cold Spring Harbor
|c 2023
|b Cold Spring Harbor Laboratory, NY
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1712667441_18041
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a Preprint publicly available; peer-reviewed version was published in Journal of Chemical Information and Modeling (doi: 10.1021/acs.jcim.3c00380) as open access paper
520 _ _ |a Atomistic-level investigation of olfactory receptors (ORs) is a challenging task due to the experimental/computational difficulties in the structural determination/prediction for members of this family of G-protein coupled receptors. Here we have developed a protocol that performs a series of molecular dynamics simulations from a set of structures predicted de novo by recent machine learning algorithms and apply it to a well-studied receptor, the human OR51E2. Our study demonstrates the need for simulations to refine and validate such models. Furthermore, we demonstrate the need for the sodium ion at a binding site near D2.50 and E3.39 to stabilize the inactive state of the receptor. Considering the conservation of these two acidic residues across human ORs, we surmise this requirement also applies to the other ∼400 members of this family.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a DFG project 291198853 - FOR 2518: Funktionale Dynamik von Ionenkanälen und Transportern - DynIon - (291198853)
|0 G:(GEPRIS)291198853
|c 291198853
|x 1
536 _ _ |a DFG project 329460521 - Protonentransfer und Substraterkennung in SLC17-Transportern (329460521)
|0 G:(GEPRIS)329460521
|c 329460521
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Capelli, Riccardo
|0 P:(DE-Juel1)174546
|b 1
|e Corresponding author
773 _ _ |a 10.1101/2023.02.22.529484
|0 PERI:(DE-600)2766415-6
|t bioRxiv beta
|y 2023
856 4 _ |u https://doi.org/10.1101/2023.02.22.529484
856 4 _ |u https://juser.fz-juelich.de/record/1024690/files/2023.02.22.529484.full.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024690/files/2023.02.22.529484.full.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024690/files/2023.02.22.529484.full.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024690/files/2023.02.22.529484.full.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024690/files/2023.02.22.529484.full.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1024690
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169976
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21