001024692 001__ 1024692
001024692 005__ 20240625095117.0
001024692 0247_ $$2doi$$a10.1101/2024.02.07.579339
001024692 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02365
001024692 037__ $$aFZJ-2024-02365
001024692 082__ $$a570
001024692 1001_ $$0P:(DE-Juel1)180309$$aDmitrieva, Nataliia$$b0$$ufzj
001024692 245__ $$aTransport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters
001024692 260__ $$aCold Spring Harbor$$bCold Spring Harbor Laboratory, NY$$c2024
001024692 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1712665697_18044
001024692 3367_ $$2ORCID$$aWORKING_PAPER
001024692 3367_ $$028$$2EndNote$$aElectronic Article
001024692 3367_ $$2DRIVER$$apreprint
001024692 3367_ $$2BibTeX$$aARTICLE
001024692 3367_ $$2DataCite$$aOutput Types/Working Paper
001024692 500__ $$aPreprint publicly available
001024692 520__ $$aThe solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and the liver. We combined experimental and computational approaches to describe the transport mechanisms of a model bacterial protein, the D-galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galacto-nate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation. After release of the second proton, apo DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding.
001024692 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001024692 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001024692 536__ $$0G:(GEPRIS)291198853$$aDFG project 291198853 - FOR 2518: Funktionale Dynamik von Ionenkanälen und Transportern - DynIon - (291198853)$$c291198853$$x2
001024692 536__ $$0G:(GEPRIS)329460521$$aDFG project 329460521 - Protonentransfer und Substraterkennung in SLC17-Transportern (329460521)$$c329460521$$x3
001024692 588__ $$aDataset connected to CrossRef
001024692 7001_ $$0P:(DE-Juel1)191566$$aGholami, Samira$$b1$$ufzj
001024692 7001_ $$0P:(DE-Juel1)165847$$aAlleva, Claudia$$b2
001024692 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3$$ufzj
001024692 7001_ $$0P:(DE-Juel1)169976$$aAlfonso-Prieto, Mercedes$$b4$$ufzj
001024692 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b5$$eCorresponding author$$ufzj
001024692 773__ $$0PERI:(DE-600)2766415-6$$a10.1101/2024.02.07.579339$$tbioRxiv beta$$y2024
001024692 8564_ $$uhttps://doi.org/10.1101/2024.02.07.579339
001024692 8564_ $$uhttps://juser.fz-juelich.de/record/1024692/files/2024.02.07.579339v2.full-1.pdf$$yOpenAccess
001024692 8564_ $$uhttps://juser.fz-juelich.de/record/1024692/files/2024.02.07.579339v2.full-1.gif?subformat=icon$$xicon$$yOpenAccess
001024692 8564_ $$uhttps://juser.fz-juelich.de/record/1024692/files/2024.02.07.579339v2.full-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024692 8564_ $$uhttps://juser.fz-juelich.de/record/1024692/files/2024.02.07.579339v2.full-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024692 8564_ $$uhttps://juser.fz-juelich.de/record/1024692/files/2024.02.07.579339v2.full-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024692 909CO $$ooai:juser.fz-juelich.de:1024692$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180309$$aForschungszentrum Jülich$$b0$$kFZJ
001024692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191566$$aForschungszentrum Jülich$$b1$$kFZJ
001024692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b3$$kFZJ
001024692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169976$$aForschungszentrum Jülich$$b4$$kFZJ
001024692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich$$b5$$kFZJ
001024692 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001024692 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001024692 9141_ $$y2024
001024692 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024692 920__ $$lyes
001024692 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
001024692 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
001024692 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x2
001024692 980__ $$apreprint
001024692 980__ $$aVDB
001024692 980__ $$aUNRESTRICTED
001024692 980__ $$aI:(DE-Juel1)IBI-1-20200312
001024692 980__ $$aI:(DE-Juel1)IAS-5-20120330
001024692 980__ $$aI:(DE-Juel1)INM-9-20140121
001024692 9801_ $$aFullTexts