001     1024693
005     20240409204831.0
024 7 _ |a 10.1101/2024.03.28.24305007
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02366
|2 datacite_doi
037 _ _ |a FZJ-2024-02366
100 1 _ |a Petersen, Marvin
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Enhancing Cognitive Performance Prediction through White Matter Hyperintensity Disconnectivity Assessment: A Multicenter Lesion Network Mapping Analysis of 3,485 Memory Clinic Patients
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1712647930_29215
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Introduction: White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment and are a key imaging marker in evaluating cognitive health. However, WMH volume alone does not fully account for the extent of cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. We propose that lesion network mapping (LNM), enabling the inference of brain networks disconnected by lesions, represents a promising technique for enhancing our understanding of the role of WMH in cognitive disorders. Our study employed this approach to test the following hypotheses: (1) LNM-informed markers surpass WMH volumes in predicting cognitive performance, and (2) WMH contributing to cognitive impairment map to specific brain networks.Methods & results: We analyzed cross-sectional data of 3,485 patients from 10 memory clinic cohorts within the Meta VCI Map Consortium, using harmonized test results in 4 cognitive domains and WMH segmentations. WMH segmentations were registered to a standard space and mapped onto existing normative structural and functional brain connectome data. We employed LNM to quantify WMH connectivity across 480 atlas-based gray and white matter regions of interest (ROI), resulting in ROI-level structural and functional LNM scores. The capacity of total and regional WMH volumes and LNM scores in predicting cognitive function was compared using ridge regression models in a nested cross-validation. LNM scores predicted performance in three cognitive domains (attention and executive function, information processing speed, and verbal memory) significantly better than WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed that higher LNM scores, representing greater disruptive effects of WMH on regional connectivity, in gray and white matter regions of the dorsal and ventral attention networks were associated with lower cognitive performance.Conclusion: WMH-related brain network disconnectivity significantly improves the prediction of current cognitive performance in memory clinic patients compared to WMH volume as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network effects, particularly in attention-related brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving forward, refining WMH information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate the identification of subgroups at risk of cognitive disorders.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Coenen, Mirthe
|0 P:(DE-HGF)0
|b 1
700 1 _ |a DeCarli, Charles
|0 P:(DE-HGF)0
|b 2
700 1 _ |a De Luca, Alberto
|0 P:(DE-HGF)0
|b 3
700 1 _ |a van der Lelij, Ewoud
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Barkhof, Frederik
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Benke, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Chen, Christopher P. L. H.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Dal-Bianco, Peter
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dewenter, Anna
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Duering, Marco
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Enzinger, Christian
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Ewers, Michael
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Exalto, Lieza G.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Fletcher, Evan F.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Franzmeier, Nicolai
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Hilal, Saima
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Hofer, Edith
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Koek, Huiberdina L.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Maier, Andrea B.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Maillard, Pauline M.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a McCreary, Cheryl R.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Papma, Janne M.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Pijnenburg, Yolande A. L.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Rubinski, Anna
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Schmidt, Reinhold
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Smith, Eric E.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Steketee, Rebecca M. E.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a van den Berg, Esther
|0 P:(DE-HGF)0
|b 28
700 1 _ |a van der Flier, Wiesje M.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Venkatraghavan, Vikram
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Vernooij, Meike W.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Venketasubramanian, Narayanaswamy
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Wolters, Frank J.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Xin, Xu
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Horn, Andreas
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 36
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 37
700 1 _ |a Thomalla, Götz
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Biesbroek, J. Matthijs
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Biessels, Geert Jan
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Cheng, Bastian
|0 P:(DE-HGF)0
|b 41
773 _ _ |a 10.1101/2024.03.28.24305007
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024693/files/2024.03.28.24305007.full.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024693/files/2024.03.28.24305007.full.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024693/files/2024.03.28.24305007.full.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024693/files/2024.03.28.24305007.full.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024693/files/2024.03.28.24305007.full.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024693
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 36
|6 P:(DE-Juel1)172843
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 36
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 37
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 37
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21