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Abstract. Introduction: White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment 
and are a key imaging marker in evaluating cognitive health. However, WMH volume alone does not fully account for the extent of 
cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. We propose that lesion network mapping (LNM), 
enabling the inference of brain networks disconnected by lesions, represents a promising technique for enhancing our understanding 
of the role of WMH in cognitive disorders. Our study employed this approach to test the following hypotheses: (1) LNM-informed 
markers surpass WMH volumes in predicting cognitive performance, and (2) WMH contributing to cognitive impairment map to 
specific brain networks. Methods & results: We analyzed cross-sectional data of 3,485 patients from 10 memory clinic cohorts 
within the Meta VCI Map Consortium, using harmonized test results in 4 cognitive domains and WMH segmentations. WMH 
segmentations were registered to a standard space and mapped onto existing normative structural and functional brain connectome 
data. We employed LNM to quantify WMH connectivity across 480 atlas-based gray and white matter regions of interest (ROI), 
resulting in ROI-level structural and functional LNM scores. The capacity of total and regional WMH volumes and LNM scores in 
predicting cognitive function was compared using ridge regression models in a nested cross-validation. LNM scores predicted 
performance in three cognitive domains (attention and executive function, information processing speed, and verbal memory) 
significantly better than WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed 
that higher LNM scores, representing greater disruptive effects of WMH on regional connectivity, in gray and white matter regions of 
the dorsal and ventral attention networks were associated with lower cognitive performance. Conclusion: WMH-related brain 
network disconnectivity significantly improves the prediction of current cognitive performance in memory clinic patients compared to 
WMH volume as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network effects, 
particularly in attention-related brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving 
forward, refining WMH information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate 
the identification of subgroups at risk of cognitive disorders. 
 

Introduction 
Cerebral small vessel disease (CSVD) is a major driver of 
vascular cognitive impairment (VCI) and often also 
contributes to dementia with a primary neurodegenerative 
or mixed pathology.1 White matter hyperintensities (WMH) 
are the signature imaging marker of CSVD, and mark sites 
of white matter disintegration caused by microangiopathic 
axonal loss and demyelination.2,3 However, a 
comprehensive understanding of mechanisms linking WMH 
to their broad range of clinical manifestations, specifically 
cognitive impairment, is still lacking. 

Although there is a well-documented association 
between WMH volumes and cognitive functions at the 
group-level, the association between WMH volume and 
symptom severity demonstrates considerable variability 
with some individuals exhibiting fewer symptoms despite 
high WMH burden and vice versa.4 The apparent complexity 
of this relationship underscores the need for improved 
techniques for disease quantification to more accurately 
predict individual cognitive impairment for effective 
diagnostics and ultimately targeted treatment of CSVD 
patients.5 For example, lesion-symptom inference 
techniques have linked cognitive impairment to WMH 
located in strategic white matter regions, independent of 
total WMH volume.4,6,7  

However, these recent findings might not fully reflect 
the complexity of CSVD-related cognitive impairment, 
which is thought to emerge from disturbances in the 
interplay of large-scale brain networks involving cortical 
and subcortical gray matter areas, interconnected by white 
matter tracts.8  In recent years, advanced imaging analysis 
models have been developed to comprehensively capture 
lesion effects on brain circuitry.9 Specifically, lesion 
network mapping (LNM) techniques capitalize on advanced 
neuroimaging to map lesions on reconstructions of the 
human brain network.10 By that, a lesion’s impact on 
connectivity to different brain regions can be quantified – 
i.e., the lesion’s network embedding is measured – allowing 
to infer which regions are disconnected. Application of LNM 
has been shown to predict clinical symptoms in a variety of 

neurological disorders that can be understood as 
“disconnection syndromes”, such as stroke or multiple 
sclerosis.11,12  

Here, we propose LNM as a technique to quantify WMH-
related, strategic neuronal disconnectivity for improved 
prediction of cognitive performance in CSVD. We employ 
LNM on a large-scale, multicenter dataset, integrating 
cognitive test results and MRI-based WMH segmentations 
from 3485 patients of 10 memory clinic cohorts through the 
Meta VCI Map Consortium.6,13 Our hypotheses are twofold: 
(1) LNM-based measures of WMH disconnectivity surpass 
WMH volumes in predicting cognitive performance, and (2) 
WMH contributing to cognitive deficits map to specific brain 
networks that functionally determine their symptom 
profile. 
 

Materials and methods 
Study population 

Methodological details are illustrated in figure 1. We 
examined previously harmonized, cross-sectional clinical 
and imaging data of 3485 patients from 10 memory clinic 
cohorts of the Meta VCI Map Consortium.6,13 Meta VCI Map 
is a multi-site collaboration for conducting meta-analyses of 
strategic lesion topography in vascular cognitive 
impairment. The memory clinic cohorts included in this 
study comprise the Erasmus MC Memory Clinic Cohort 
(ACE, n=52, Netherlands), Alzheimer’s Disease 
Neuroimaging Initiative (ADNI, n=994, USA)14, UC Davis 
Alzheimer’s Disease Center Diversity Cohort (AUCD, n=641, 
USA)15, BrainIMPACT (n=53, Canada)16, Functional 
Assessment of Vascular Reactivity (FAVR, n=47, Canada)16, 
Harmonization (n=207, Singapore)4, Prospective Dementia 
Registry (PRODEM, n=367, Austria)17, TRACE-VCI (n=821, 
Netherlands)18, Utrecht Memory Clinic Cohort (UMCC, 
n=227, Netherlands) and VASCAMY (n=76, Germany). All 
cohorts include patients assessed at outpatient memory 
clinics for cognitive symptoms, undergoing structural MRI 
alongside neuropsychological tests of cognitive 
performance.  
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Figure 1. Methodology. a) Data from 10 memory clinic cohorts of the Meta VCI Map Consortium were used including harmonized cognitive scores and 
WMH segmentations in MNI space. For functional LNM we employed the GSP1000 normative functional connectome comprising resting-state fMRI data 
from 1000 healthy GSP participants. For structural lesion network mapping, we used the HCP32 normative structural connectome based on diffusion-
weighted imaging data from 32 healthy HCP participants, detailing the fiber bundle architecture. b) LNM was performed to quantify the functional and 
structural connectivity of WMH to multiple ROIs (Schaefer400x7 cortical, Melbourne Subcortical Atlas subcortical, HCP1065 white matter areas). For this, 
voxel-level functional and structural connectivity maps were computed for each ROI, reflecting resting-state BOLD correlations or anatomical connection 
strength via tractography streamlines, respectively. ROIwise LNM scores were derived by averaging voxel-level connectivity indices within the normalized 
WMH masks, considering only positive correlation coefficients for functional mapping. This resulted in a matrix for both fLNM and sLNM scores per ROI 
per patient (nROIs x npatients). The matrices shown in the figure are populated with random data only serving as a visual aid. c) The fLNM and sLNM scores 
across patients were used in predictive models to estimate cognitive domain scores (predictive modelling analysis) and analyzed in permutation-based 
general linear models to identify regions significantly influencing the cognitive domain-WMH disconnectivity relationship at the ROI level (ROI-level in-
ferential statistics). Abbreviations: fLNM = functional lesion network mapping, GSP = Genomic Superstruct Project, HCP = Human Connectome Project, ROI 
= region of interest, rsfMRI = resting-state functional magnetic resonance imaging, sLNM = structural lesion network mapping, WMH = white matter 
hyperintensities of presumed vascular origin. 
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Patients with cognitive impairment due to non-vascular, 
non-neurodegenerative causes (e.g., excessive alcohol use 
disorder, cerebral malignancies, multiple sclerosis) or 
monogenic disorders (e.g., CADASIL) were excluded. 
Further details on each cohort including sample-specific 
inclusion and exclusion criteria were reported previously.6 
 
Ethics approval 

All cohorts received the requisite ethical and institutional 
approval in accordance with local regulations, which 
included informed consent, to allow data acquisition and 
sharing.6 
 
Cognitive assessments 

Detailed harmonization procedures, including specific test-
to-domain assignments, were reported previously.19 
Neuropsychological tests from participating cohorts were 
norm-referenced against local norms or a healthy control 
group, and adjusted on the individual subject level for age, 
sex, and education. These tests were categorized into four 
cognitive domains: attention/executive function, 
information processing speed, language, and verbal 
memory. Within these domains, norm-referenced 
neuropsychological test scores were z-scored and averaged 
to obtain cognitive domain scores (z-scores), which capture 
individual-level cognitive domain performance relative to 
healthy controls. 
 
White matter hyperintensity segmentation 

WMH segmentations were provided by the participating 
centers, or performed at the UMC Utrecht (ACE cohort). 
Segmentation masks were obtained applying established 
automated neuroimaging software on fluid-attenuated 
inversion recovery (FLAIR) MRI.20 WMH segmentations 
were spatially normalized to the Montreal Neurological 
Institute (MNI)-152 template.21 To ensure registration 
quality, the normalized WMH masks were visually 
inspected and patients with failed registrations were 
excluded. Furthermore, random subsamples of normalized 
WMH segmentations were returned to the respective 
participating institutions to confirm the data quality. WMH 
segmentation masks were used to compute the total WMH 
volume as well as tract-level WMH volumes for each of the 
64 white matter fiber tracts of the HCP1065 Tract Atlas.22 
Details on cohort-specific segmentation and registration 
procedures were reported previously.6,23 
 
Lesion network mapping 

LNM was performed to quantify the functional and 
structural connectivity of WMH to cortical, subcortical and 
white matter regions of interest (ROIs).24 ROIs were defined 
in MNI space according to the Schaefer400x7 Atlas 
(nROIs=400), the Melbourne Subcortical Atlas (nROIs=16) and 
the HCP1065 Tract Atlas (nROIs=64) (figure 1b).22,25,26 For 
visualization of the investigated HCP1065 tracts, see 
supplementary figure S1. 

Functional lesion network mapping (fLNM) was 
conducted using a normative functional connectome, 
derived from resting-state fMRI scans of 1,000 healthy 
individuals from the Genomic Superstruct Project 
(GSP1000).27 Preprocessing included global signal 

regression and spatial smoothing at a 6mm full width at half 
maximum kernel as previously detailed.28 For each ROI, we 
averaged blood oxygen level-dependent (BOLD) signal 
fluctuations across voxels within the ROI and correlated this 
aggregate time series with BOLD signals of all brain voxels. 
This process generated 1,000 Pearson correlation 
coefficients per voxel, i.e., one for each GSP1000 subject, 
which were then Fischer z-transformed and averaged 
across subjects to create a functional connectivity map per 
ROI. Functional connectivity map computations were 
performed using the ROI masks as seeds in the connectome 

mapper function of Lead-DBS (lead-dbs.org).29 
Subsequently, ROI-level fLNM scores were calculated by 
averaging positive Pearson correlation coefficients within 
the WMH mask, reflecting each ROI's functional 
connectivity to WMH. 

Structural lesion network mapping (sLNM) was 
performed employing a normative structural connectome 
of 32 subjects of the Human Connectome Project (HCP32).30 
The structural connectome was reconstructed by applying 
DSI Studio on multi-shell diffusion MRI data acquired on a 
MRI scanner specifically designed for high-fidelity 
connectome reconstruction. Streamlines resulting from 
whole brain tractography were normalized to MNI and 
aggregated across subjects.31 Employing Lead-DBS, voxel-
wise structural connectivity maps were computed per atlas 
ROI, quantifying per voxel the number of streamlines 
connecting the voxel to the ROI.29 ROI-level sLNM scores, 
reflecting structural connectivity between WMH and 
individual ROI, were determined by averaging the voxel 
values (representing streamline counts to the ROI) within 
the WMH mask. 

Summarized, LNM yielded both a fLNM and sLNM 
score for each ROI per subject, indicating the functional and 
structural connectivity between WMH and ROI, 
respectively. 
 
Predictive modelling analysis 

To evaluate the predictive capacity of fLNM and sLNM 
scores, we performed a predictive modelling analysis 
leveraging scikit-learn (v. 1.0.2, scikit-learn.org) and julearn 
(v. 0.3.0, juaml.github.io/julearn).32,33 In the analysis, six 
different feature sets were compared: (1) confounds (age, 
sex and education), (2) total WMH volume + confounds, (3) 
tract-level WMH volumes + confounds, (4) ROI-level fLNM 
scores + confounds, (5) ROI-level sLNM scores + confounds, 
(6) ROI-level fLNM and sLNM scores + confounds. 

For each cognitive domain, multivariable ridge 
regression models were trained using the abovementioned 
feature sets to predict cognitive domain scores. Ridge 
regression models include a L2 penalty that reduces 
coefficients to mitigate overfitting and address 
multicollinearity. We optimized the L2 penalties through a 
10-fold nested cross-validation, tuning α values ranging 
from 0.001 to 1000 (α = 0.001, 0.01, 0.1, 1, 10, 100, 1000). 
The model performance was scored by the Pearson 
correlation between actual and predicted cognitive domain 
scores, supplemented with explained variance (R², 
coefficient of determination) and negative mean squared 
error as additional measures of performance. In line with 
best practices, explained variance was calculated via sum-
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of-squares formulation (using scikit-learn's r2_score) 
instead of squaring Pearson correlations.34 Before model 
fitting, continuous input features were z-scored in a cross-
validation consistent manner to avoid data leakage.35 To 
maintain a consistent distribution of the target variable 
across training and test sets, we employed julearn’s 
ContinuousStratifiedKFold function for creating the folds. 
Cross-validations were repeated 10 times with varied 
random splits to minimize bias from any single split.36 This 
approach yielded 100 scores for each feature-target set 
combination which were compared between feature sets 
using a machine learning-adjusted t-test.37 We repeated the 
predictive modelling analysis for different sample sizes 
(20%-100%, 1% steps, randomly sampled) to examine the 
robustness and sample size dependency of predictive 
performances. As a whole, this analysis follows current best 
practices of predictive modelling in neuroimaging.34 
 
Region of interest-level inferential statistics 

To investigate whether WMH-related disconnectivity of 
specific brain circuits links to impaired cognitive 
performance, we conducted permutation-based testing for 
linear associations between regional LNM scores and 
cognitive domain scores in a general linear model. All 
statistical analyses were conducted in FSL’s Permutation 
Analysis of Linear Models (PALM) based on MATLAB (v. 
2021b) and Python 3.9.1 leveraging neuromaps (v. 0.0.5).38–

40 Statistical tests were two-sided (npermutation=5000), with a 
p<0.05 as the significance threshold. To account for 
multiple comparisons, p-values were adjusted for family-
wise error. General linear models were adjusted for age, sex 
and education. To obtain standardized β-coefficients, input 
variables were z-scored beforehand. As a result, β-
coefficients and p-values were obtained for each cortical, 
subcortical, and white matter ROI (nROIs=480) indicating the 
strength and significance of the LNM score's linear 
association with cognitive domain scores for each ROI. To 
aid in interpreting the spatial effect patterns, we averaged 
the β-coefficients representing cortical effects in the 7 
intrinsic resting-state networks (Yeo networks), which 
reflect the cerebral cortex's intrinsic functional 
organization.28 The Schaefer400x7 Atlas assigns ROIs to 
these networks: visual, somatomotor, dorsal attention, 
ventral attention (salience), limbic, frontoparietal control, 
and default mode network.25 Significance was tested via 
spin permutations (nspins=1000) which represent a null 
model preserving the inherent spatial autocorrelation of 
cortical information. 
 
Sensitivity analyses 

During computations of fLNM scores, we decided to only 
consider positive Pearson correlations of resting-state 
BOLD signal within WMH masks following previous 
approaches as the role of negative correlations is 
controversial.41 However, some studies suggest biological 
meaning in anticorrelations of BOLD signal fluctuations.42,43 
Hence, we conducted a sensitivity analysis based on fLNM 
scores computed by averaging only the negative Pearson 
correlations in the WMH masks. We reconducted the 
predictive modelling analysis and ROI-level inferential 
statistics using these negative fLNM scores.  

Moreover, previous work employs thresholding to discard 
potentially noisy connectivity information. To further 
examine the effect of thresholding on our results we 
repeated the predictive modelling analysis comparing the 
main analysis results to fLNM and sLNM scores computed 
based on 25% and 50% highest voxel intensities in the 
WMH mask. For negative fLNM scores, the lowest 25% and 
50% voxel intensities in the WMH mask were considered. 

Exploratory analyses 

Further exploratory analyses including investigations of 
voxel-level lesion network maps and structure-function 
coupling of LNM scores are described in supplementary text 

S2.  

 
Data availability 

Analysis code can be accessed on GitHub 
(https://github.com/csi-
hamburg/2024_petersen_wmh_disconnectivity_memory_cl
inic). The data that support the findings of this study are 
available from the corresponding author/project leads on 
reasonable request 
(https://metavcimap.org/group/become-a-member/). 
Restrictions related to privacy and personal data sharing 
regulations and informed consent may apply. 
 
 

Results 
Sample characteristics 

The pooled study sample of 3485 patients had a mean age 
of 71.7 ± 8.9 years and 49.8% were female. Among patients, 
777 (22.3%) had subjective cognitive impairment, 1389 
(39.9%) had mild cognitive impairment, and 1319 (37.9%) 
had dementia. Further details on the sample characteristics 
can be found in table 1. A heatmap of WMH distribution can 
be found in supplementary figure S3. 
 
Predictive modelling analysis 

To evaluate if information on WMH network connectivity 
exceeds the predictive capacity of volumetric WMH metrics 
for cognitive performance, we first computed regional fLNM 
and sLNM scores, that capture the structural and functional 
disconnection induced by WMH. We then employed ridge 
regression for predictive modelling. Model performance 
was assessed via Pearson correlation (r) of predicted and 
actual cognitive domain scores averaged across folds. All 
models incorporated age, sex, and education (confounds) as 
features to establish a performance baseline. The 
corresponding results are visualized in figure 2a.  In 
summary, LNM scores significantly improved cognitive 
function prediction in all domains, except language, over 
WMH volumes. In detail, the predictive performance 
achieved by the confounds-only model was r = 0.312 for 
attention / executive function, r = 0.239 for information 
processing speed, r = 0.404 for language, and r = 0.305 for 
verbal memory. Models informed by total or tract-wise 
WMH volumes achieved a predictive performance of r = 
0.341 - 0.365 for attention / executive function, r = 0.247 – 
0.250 for information processing speed, r = 0.404 – 0.416 
for language, and r = 0.327 – 0.356 for verbal memory. For 
the prediction of attention / executive function, models 
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informed by LNM scores exhibited a significantly higher 
predictive performance than models informed by 
volumetric WMH measures (LNM: r = 0.399 - 0.410 vs. WMH 
volume: r = 0.341 – 0.365; adjusted t-test, all p < 0.05). LNM-
informed models also better predicted information 
processing speed (LNM: r = 0.310 - 0.316 vs. WMH volume: 
r = 0.247 – 0.250, adjusted t-test, all p < 0.05) as well as 
verbal memory (LNM: r = 0.390 - 0.408 vs. WMH volume: r 
= 0.327 – 0.356; adjusted t-test, all p < 0.05). Across these 
domains, the best prediction was achieved by models 
incorporating both structural and functional LNM scores. 
For attention / executive function, comparing the 
improvement from the confounds-based model to the 
model informed by total WMH volume (0.341 – 0.312 = 
0.029) with the improvement to the model based on both 
LNM modalities (0.410 – 0.312 = 0.098), the usage of fLNM 
and sLNM scores amounts to a 3.38-fold increase (0.098 / 
0.029 = 3.38) in added predictive performance. Considering 
both LNM modalities for predicting information processing 
speed and verbal memory amounted to 7.00-fold and 4.68-
fold increase in predictive performance, respectively. For 
the prediction of language domain scores, performance 
between LNM-informed models and WMH volume 

measures did not differ significantly (LNM: r = 0.380 - 0.409 
vs. WMH volume: r = 0.404 – 0.416, all p > 0.05). See 
supplementary materials S4 and S5 for predictive modelling 
results using explained variance and negative mean 
squared error as scoring methods. Details on regional 
averages of LNM scores are shown supplementary figure S6. 

To test the robustness of prediction results, we 
repeated the analysis in randomly chosen subsamples of 
increasing sizes (figure 2b). For attention / executive 
function and verbal memory, LNM-informed models started 
to consistently exceed WMH volume-based models at 
approximately 50% (attention / executive function: 
n=1723, verbal memory: n=1712; note that data availability 
differed between cognitive domain scores) of the sample 
size. For information processing speed, LNM-informed 
models surpassed WMH volume-based models at 
approximately 25% (n=604) of the sample size. Regarding 
language, LNM-informed models approximated the 
performance of WMH volume-based models with 
increasing sample sizes. For all cognitive domain scores, 
predictive performance in the sample size range 80-100% 
showed high stability and only minor increases indicating 
saturation. 

Figure 2. Predictive modelling analysis. Violin plots illustrate prediction outcomes across cognitive domains. Each violin displays the distribution of 
Pearson correlations (between actual and predicted cognitive domain performance; 10-fold cross-validation × 10 repeats = 100 folds → 100 Pearson 
correlations) for a model informed by a different feature set. The higher the Pearson correlation, the higher the prediction performance. blue: confounds 
(age, sex and education); orange: total WMH volume + confounds; green: tract-level WMH volumes + confounds; red: sLNM scores + confounds; purple: 
fLNM scores + confounds; brown: sLNM scores + fLNM scores + confounds. Average Pearson correlations are indicated above each violin, with colored 
dots showing training score averages. Geometric symbols denote t-test results comparing LNM-based models against confound- and WMH volume-based 

models: ▲ indicates higher Pearson correlation than confounds, █ than WMH volume + confounds, ⬟ than tract-level WMH volume + confounds. Below 
the violin plots, performance curves display the average Pearson correlations across folds, for subsets randomly sampled in sizes ranging from 20% to 
100% of the entire dataset.  Line colors match the corresponding violin plots in panel a) which display predictive modelling results for the full sample 
size. Again, higher Pearson correlation indicates higher prediction performance. Abbreviations: fLNM = functional lesion network mapping, sLNM = struc-
tural lesion network mapping, WMH = white matter hyperintensities of presumed vascular origin. 
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Contextualization of WMH disconnectivity: Region of 
interest analysis 

We tested if WMH disconnectivity of specific brain circuits 
links to cognitive performance by quantifying the 
association between regional LNM scores (cortical brain 
regions and white matter tracts) and cognitive domain 
scores adjusting for age, sex and education. 

Results of the general linear model linking LNM 
scores in cortical and subcortical gray matter regions to 
cognitive domain scores are shown in figure 3. Higher fLNM 
scores (i. e. increased WMH-related disconnection) in 
cortical regions of the dorsal attention and ventral attention 
networks were linked to lower attention / executive 
function and verbal memory (figure 3a and c). Regarding 
information processing speed, the extent of the effect was 
limited to several cortical brain areas mapping to the dorsal 
attention network (figure 3b). In terms of sLNM, higher 
scores in the dorsal attention network were significantly 
associated with lower attention / executive function and 
information processing speed (figure 3d and e). Again, 
information processing speed showed a spatially more 
limited effect pattern. The relationship of regional sLNM 
and verbal memory scores showed a different spatial 
distribution mapping to the ventral attention, 
frontoparietal and default mode network (figure 3f). The 
cortical and subcortical LNM scores showed no significant 
association with the language domain score. 

The results for anatomically predefined white 
matter tracts are shown in figure 4. For tract-level fLNM, 
lower cognitive performance in attention / executive 
function, information processing speed and verbal memory 
was most strongly linked to higher fLNM scores in 
association and projection tracts connecting the parietal 
cortex (figure 4b): the middle longitudinal fasciculus 
(MdLF), parietal corticopontine tract (CPT), dorsal, medial 
and ventral sections of the superior longitudinal fasciculus 
(SLF 1-3), the parietoparahippocampal cingulate (C 
parietoparahipp.). For attention / executive function, a 
strong negative effect was also evident for the right arcuate 
fasciculus (AF). For verbal memory, significant negative 
effects were additionally found for the corticobulbar tract 
(CBT) and frontal aslant tract (FAT). 

Regarding tract-level sLNM, lower attention / 
executive function and verbal memory were significantly 
associated with higher sLNM scores in association and 
projection tracts connecting frontal regions (figure 4c): the 
frontoparahippocampal cingulate (C parietoparahipp.), 
parolfactory cingulate (C parolfactory), the superior 
longitudinal fasciculus (SLF 1-3), frontoparietal cingulate (C 
frontoparietal), anterior thalamic radiation, anterior 
corticostriatal pathways (CS anterior), uncinate fascicle, 

frontal corticopontine tract (CPT frontal). For attention / 
executive function, a strong negative effect was also evident 
for the right arcuate fasciculus (AF). Furthermore, higher 
verbal memory scores were significantly linked to higher 
sLNM scores in the fornices. Information processing speed 
showed a significant negative association with sLNM scores 
in the right medial superior longitudinal fasciculus (SLF 2) 
and frontoparahippocampal cingulate (C frontoparahipp.). 
Tract-level LNM scores showed no significant association 
with language function. For plots displaying all tract-level 
associations refer to supplementary figures S7 and S8. 

The spatial effect patterns, i.e., β-coefficient maps, 
showed significant overlap with 26 of 28 effect pattern pairs 
being significantly correlated (see supplementary figure S9 
for a correlation matrix). 
 
Sensitivity analyses 

Predictive modelling results were stable when using 
negative fLNM scores (based on anti-correlations in resting-
state fMRI measures) and when including a 25% or 50% 
thresholding step (supplementary figure S10). Exploratory 
ROI-level inferential statistics based on negative fLNM 
scores indicated that lower attention / executive function 
and information processing speed were more significantly 
associated with more negative fLNM scores in the default 
mode network (supplementary figure S11 & S12). 
 
Exploratory analyses 

Exploratory analyses are detailed in supplementary text S2. 
Functional and structural LNM scores were significantly 
correlated across ROIs and across subjects (supplementary 

figure S13). Voxel-level lesion network maps indicating 
white matter regions that contribute to variance in 
cognitive domain function are shown in supplementary 

figure S14 & S15. 
 
 

Figure 3. Inferential statistics results of cortical and subcortical gray matter. Anatomical plots on the left side display the regional relationship 
between LNM scores and cognitive domain scores. ROIs in which LNM scores across participants were significantly associated with cognitive domain 
scores after family-wise error-correction are highlighted by colors encoding β-coefficients from general linear models: a negative β (red) denotes that a 
higher regional LNM score, i.e., higher WMH disconnectivity, is associated to a lower performance in individual cognitive domains; a positive β (blue) 
indicates that a higher regional LNM score is linked to a higher cognitive domain performance. Barplots on the right side display the corresponding β 

coefficients averaged in the canonical (Yeo) resting-state functional connectivity networks. The brain in the lower right corner indicates the regional 
distribution of the canonical resting-state networks with colors corresponding to the bars. Statistical significance was assessed using spin permutations. 
Each row corresponds with a different combination of lesion network mapping modality and cognitive domain: a) fLNM – attention / executive function, 
b) fLNM – information processing speed, c) fLNM – verbal memory, d) sLNM – attention / executive function, e) sLNM – information processing speed, f) 
sLNM – verbal memory. Abbreviations: fLNM = functional lesion network mapping, pspin = p-value derived from spin permutations, ROIs = regions of 
interest, sLNM = structural lesion network mapping. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.28.24305007doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305007
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Petersen et al. 2024 (preprint)   9

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.28.24305007doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305007
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Petersen et al. 2024 (preprint)   10

Discussion 
In a large multicentric sample of memory clinic patients, we 
conducted an in-depth examination of the link between 
functional and structural LNM scores and cognitive perfor-
mance. We report two main findings: (1) both structural 
and functional LNM scores, capturing WMH-related discon-
nectivity, significantly improved the prediction of cognitive 
performance compared to WMH volume; (2) WMH-related 
disconnectivity associated with lower cognitive perfor-
mance, predominantly affected the dorsal and ventral atten-
tion networks. 
 
LNM scores surpass WMH volumes  in predicting cognitive 
performance 

In current clinical practice, vascular cognitive impairment 
in individual patients is often attributed to total WMH bur-
den, but interindividual variance in this relationship can 
lead to diagnostic dilemmas. Previous research has demon-
strated that strategic WMH locations, specifically in com-
missural and association tracts are statistically more likely 
to be associated with lower cognitive performance.4,6,7 Our 
approach adds to this perspective, not only considering the 
localization of WMH but also integrating them with network 
connectivity information to capture the WMH network em-
bedding. In our analysis, statistical models capitalizing on 
LNM scores demonstrated superior performance over those 
relying on total or tract-level WMH volume in predicting 
cognitive performance in almost all cognitive domains. As 
this analysis implements current best practices of predic-
tive modelling in neuroimaging, our findings represent evi-
dence for a true prediction of cognitive performance by 
LNM.34 Comparing the improvement from the confounds-
based model to the model informed by total WMH volume 
with the improvement to the model based on both LNM mo-
dalities, the usage of fLNM and sLNM scores yielded to a 3- 
to 7-fold increase in added predictive performance across 
the three cognitive domains. Moreover, our findings high-
lighted that total WMH volumes only marginally surpass 
age, sex, and education in predictive accuracy, stressing the 
importance of including demographic confounds as base-
lines in predictive models involving WMH volume. Collec-
tively, these findings are important, given the longstanding 
reliance on WMH extent as a primary imaging surrogate 
marker for cognitive impairment in CSVD. We provide evi-
dence for the considerable role of WMH-related “covert” 
network effects as indicated previously in studies from 
smaller clinical or population-based studies.8,44–46 

Improved prediction of cognitive performance was 
achieved irrespective of the applied LNM modality. Con-
trasting prior studies suggesting the inferiority of func-
tional LNM compared to structural approaches for predict-
ing cognitive performance post-stroke,9,47 our contrary 
findings might arise from differences in the LNM approach 

as well as our focus on WMH rather than ischemic stroke 
lesions. The ROI-based functional LNM method we used 
may be more suitable to detect the widespread network dis-
turbances induced by WMH, as opposed to the localized dis-
ruptions from stroke lesions. Notably, fLNM and sLNM 
scores were positively correlated, suggesting some degree 
of structure-function coupling that could account for their 
comparable predictive performance. However, the correla-
tion strength was mostly moderate and prediction perfor-
mance of fLNM and sLNM differed noticeably across sample 
sizes. In addition, among LNM-informed models, those in-
corporating both fLNM and sLNM modalities yielded the 
strongest results. This suggests that both LNM approaches 
are equally valuable for achieving a high predictive accu-
racy in general but might also offer complementary infor-
mation. 

Although prediction of almost all cognitive do-
mains was improved by LNM scores, predictive perfor-
mance for language functions did not exceed that of WMH 
volumes and confounds (age, sex, and education). From a 
network perspective, we argue that this finding can be ex-
plained by the relatively confined network of left-lateral-
ized brain regions involved in language functions which 
might present lower vulnerability to WMH disconnectivity 
compared to cognitive functions such as information pro-
cessing speed, that rely on a widely distributed network of 
brain regions.48 In general, the minor improvement of 
WMH-based measures over the predictive performance at-
tributed to confounds (age, sex, education) in the whole 
sample suggests that in this patient population, WMH con-
tribute minimally to the variance in language function. 
 
WMH related to cognitive impairment map to attention con-
trol networks 

WMH compromise cognitive performance by impacting the 
function of specific brain networks. To localize these effects, 
we investigated regional associations between functional 
and structural LNM scores to cognitive performance. We 
found that higher LNM scores in cortical areas of the dorsal 
and ventral attention networks were linked to lower atten-
tion and executive function, information processing speed 
and verbal memory (figure 3). Therefore, we infer that 
higher WMH disconnectivity in these networks is associ-
ated with reduced cognitive performance indicating that 
WMH impair cognitive function by disrupting the respective 
connecting white matter fiber tracts. 

The dorsal attention network – including the 
frontal eye field, the superior parietal lobule, the intrapari-
etal sulcus and caudal areas of the medial temporal gyrus – 
governs top-down attention control by enabling voluntary 
orientation, with increased activity in response to cues in-
dicating the focus location, timing, or subject.49,50 The ven-
tral attention network comprises the frontal and parietal 
operculum in the inferior frontal gyrus, medial areas of the 

Figure 4. Inferential statistics results of white matter tracts. Radar plots displaying the top 10 of strongest linear associations (standardized β) for 
the functional (a) and structural (b) lesion network mapping scores in each tract in association with cognitive domain scores. Strongest associations are 
shown at the 3 o’clock position, decreasing in strength counterclockwise. Red dots indicate a negative association (higher LNM score – lower cognitive 
domain score) and blue dots indicate a positive association (higher LNM score – higher cognitive domain score). Faintly colored dots indicate non-signif-
icant associations. Tracts with a significant association are displayed below the radar plots in alphabetical order. For paired tracts only left side examples
are visualized. Tract abbreviations: AF = arcuate fascicle, C = cingulate, CBT = corticobulbar tract, CPT = corticopontine tract, CS = corticostriatal pathway, 
F = fornix, FAT = frontal aslant tract, MdLF = middle longitudinal fasciculus, SLF = superior longitudinal fasciculus, UF = uncinate fasciculus; Abbreviations:  
fLNM = functional lesion network mapping, IPS – information processing speed, n.s. = non-significant, p = p-value, sLNM = structural lesion network 
mapping. 
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superior frontal cortex and the temporoparietal junc-
tion.42,51 This system exhibits activity increases during bot-
tom-up attention control, i.e., upon detection and orienta-
tion to salient targets, especially when they appear in unex-
pected locations.49,52 As the effect patterns largely con-
verged on these networks (supplementary figure S9), we ar-
gue that WMH affect the cognitive functions emerging from 
these networks, specifically top-down and bottom-up atten-
tion control. This aligns with the observation that deficits in 
attention and executive function are among the most prom-
inent symptoms in CSVD and VCI in general.1 Furthermore, 
prior work demonstrates altered resting-state functional 
connectivity as well as task activation in attention control 
networks related to CSVD.53–55 Given the covariance of the 
identified effect patterns, we speculate that WMH contrib-
ute to variance in the performance of other cognitive do-
mains, e.g., information processing speed by affecting the 
attention demands posited by the corresponding tests. 
 
WMH contribute to cognitive impairment by disrupting 
frontal and parietal white matter tracts 

Regional findings in gray matter areas of the attention con-
trol networks are further complemented by white matter 
tract-level results (figure 4). Functional and structural LNM 
converged on a significant involvement of tracts connecting 
frontal and parietal areas involved in attention: the dorsal, 
medial and ventral section of the superior longitudinal fas-
ciculus – which are known to connect the anterior and pos-
terior parts of the dorsal and ventral attention networks, 
the medial longitudinal fasciculus, the corticopontine tract, 
frontoparietal sections of the cingulate, the anterior tha-
lamic radiation, the frontal aslant tract and the arcuate fas-
cicle. Although there were some differences in highlighted 
tracts between functional and structural LNM, this possibly 
reflects that both approaches capture different aspects of 
the same anatomy, with sLNM possibly being more sensi-
tive to direct WMH-induced disruption of axonal connec-
tions and functional LNM also reflecting effects mediated 
via polysynaptic brain circuitry. 

Strikingly, in the context of verbal memory, struc-
tural WMH disconnectivity pinpointed a distinct set of 
memory-relevant tracts: the uncinate fascicle, cingulate, 
and fornix. Intriguingly, disruptions in fornix connectivity 
due to WMH were associated with improved verbal 
memory in patients, a finding that appears counterintuitive 
given the fornix's involvement in maintaining memory func-
tion. This paradox may be attributable to WMH disrupting 
inhibitory fibers. For further discussion covering negative 
fLNM scores/anticorrelations see supplementary text S16. 
 
A unifying hypothesis of WMH disconnectivity 

Drawing upon a comprehensive LNM analysis in a memory 
clinic sample of patients with differing extent and etiology 
of cognitive impairment, our research converges on a unify-
ing hypothesis: WMH contribute to variance in cognitive 
functions by disrupting brain circuitry involved in attention 
control. Our findings not only shed light on the intricate re-
lationships between CSVD, neuroanatomy and cognitive im-
pairment, but they also hint at potential avenues of clinical 
utilization. The definitive role of CSVD treatments, particu-
larly in precluding cognitive sequelae, is yet to be firmly 

established. Although there have been promising outcomes 
related to risk factor modification, particularly blood pres-
sure control,56,57 pointing towards enhanced cognitive tra-
jectories, clinical trials in VCI require biomarkers to ro-
bustly identify vascular contributions to cognitive impair-
ment and vulnerable individuals. Moving forward, leverag-
ing connectivity information could address this gap contrib-
uting to patient-tailored therapeutic interventions and fa-
cilitating the identification of subgroups at risk of cognitive 
disorders through vascular lesions likely to reap the most 
substantial benefits from medical interventions. 
 
Conclusion 

WMH-related brain network connectivity measures signifi-
cantly improve the prediction of current cognitive perfor-
mance in memory clinic patients compared to WMH volume 
or epidemiological factors. Our findings highlight the contri-
bution of WMH disconnectivity, particularly in attention-re-
lated brain regions, to vascular cognitive impairment. As 
this research field progresses, harnessing neuroimaging 
markers of white matter disconnection in CSVD has the po-
tential to aid individualized diagnostic and therapeutic 
strategies. 
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