001     1024702
005     20250203103144.0
024 7 _ |a 10.29363/nanoge.neuronics.2024.010
|2 doi
037 _ _ |a FZJ-2024-02369
100 1 _ |a Yu, Zhenming
|0 P:(DE-Juel1)190500
|b 0
|e Corresponding author
111 2 _ |a Neuronics Conference
|c València
|d 2024-02-21 - 2024-02-23
|w Spain
245 _ _ |a The Ouroboros of Memristors: Neural Networks Facilitating Memristor Programming
260 _ _ |c 2023
|b FUNDACIO DE LA COMUNITAT VALENCIANA SCITO València
295 1 0 |a Proceedings of the Neuronics Conference - FUNDACIO DE LA COMUNITAT VALENCIANA SCITO València, 2023. - ISBN - doi:10.29363/nanoge.neuronics.2024.010
300 _ _ |a 10
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1712643849_1886
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Memristive devices hold promise to improve the scale and efficiency of machine learning and neuromorphic hardware, thanks to their compact size, low power consumption, and the ability to perform matrix multiplications in constant time. However, on-chip training with memristor arrays still faces challenges, including device-to-device and cycle-to-cycle variations, switching non-linearity, and especially SET and RESET asymmetry [1], [2].To combat device non-linearity and asymmetry, we propose to program memristors by harnessing neural networks that map desired conductance updates to the required pulse times. With our method, approximately 95% of devices can be programmed within a relative percentage difference of ±50% from the target conductance after just one attempt. Moreover, our neural pulse predictor demonstrates a significant reduction in memristor programming delay compared to traditional write-and-verify methods, particularly advantageous in applications such as on-chip training and fine-tuning.Upon deployment, the neural pulse predictor can be integrated into memristor accelerators, predicting pulses with an O(1) time complexity while utilizing a minimal fraction of the available memristor arrays, reducing hardware overhead compared with previous works [3]-[6]. Additionally, multiple networks can be trained to operate in parallel and enhance precision across various conductance ranges.Our work contributes significantly to the practical application of memristors, particularly in reducing delays in memristor programming. This work also offers a fresh perspective on the symbiotic relationship between memristors and neural networks and sets the stage for innovation in memristor optimizations.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Yang, Ming-Jay
|0 P:(DE-Juel1)192385
|b 1
|u fzj
700 1 _ |a Finkbeiner, Jan
|0 P:(DE-Juel1)190112
|b 2
|u fzj
700 1 _ |a Siegel, Sebastian
|0 P:(DE-Juel1)174486
|b 3
|u fzj
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 4
|u fzj
700 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 5
|u fzj
773 _ _ |a 10.29363/nanoge.neuronics.2024.010
909 C O |o oai:juser.fz-juelich.de:1024702
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190500
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192385
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)174486
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188273
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21