001024723 001__ 1024723
001024723 005__ 20250204113827.0
001024723 0247_ $$2doi$$a10.1002/batt.202300445
001024723 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02389
001024723 0247_ $$2WOS$$aWOS:001138288400001
001024723 037__ $$aFZJ-2024-02389
001024723 082__ $$a540
001024723 1001_ $$00009-0006-1001-2891$$aCloos, Lisa$$b0$$eCorresponding author
001024723 245__ $$aThermal Transients to Accelerate Cyclic Aging of Lithium‐Ion Batteries
001024723 260__ $$aWeinheim$$bWiley-VCH$$c2024
001024723 3367_ $$2DRIVER$$aarticle
001024723 3367_ $$2DataCite$$aOutput Types/Journal article
001024723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712674658_18040
001024723 3367_ $$2BibTeX$$aARTICLE
001024723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024723 3367_ $$00$$2EndNote$$aJournal Article
001024723 500__ $$aDas Projekt wurde zudem gefördert durch: BMBF03XP0320D & BMBF03XP0320A
001024723 520__ $$aCyclic aging tests of lithium-ion batteries are very time-consuming. Therefore, it is necessary to reduce the testing time by tightening the testing conditions. However, the acceleration with this approach is limited without altering the aging mechanisms. In this paper, we investigate whether and how thermal transients accelerate the aging. The tests are performed on NMC/graphite pouch cells by applying temperatures in a range of 5 °C to 45 °C to the cell surface. The results show, that an accelerated capacity loss can be achieved in comparison to the reference cell at a steady-state temperature of 25 °C. However, capacity difference analysis (CDA) prognoses a covering layer for the transient cells, which is confirmed upon post-mortem analysis. We suspect the origin to lie in the dynamics of temperature fields and current distribution during temperature changes when charging. More specifically, areas of higher temperature in the cell lead to high local current densities and plating. Subsequently, high temperatures promote the reaction of the plated lithium with electrolyte. The results show that thermal transients are a critical condition for lifetime and safety and should be treated with caution as they can occur during real life operation.
001024723 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024723 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024723 7001_ $$00000-0003-1653-4683$$aQueisser, Oliver$$b1
001024723 7001_ $$00000-0002-2938-4349$$aChahbaz, Ahmed$$b2
001024723 7001_ $$00000-0003-1629-6830$$aPaarmann, Sabine$$b3
001024723 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b4
001024723 7001_ $$aWetzel, Thomas$$b5
001024723 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202300445$$gVol. 7, no. 3, p. e202300445$$n3$$pe202300445$$tBatteries & supercaps$$v7$$x2566-6223$$y2024
001024723 8564_ $$uhttps://juser.fz-juelich.de/record/1024723/files/Batteries%20Supercaps%20-%202023%20-%20Cloos%20-%20Thermal%20Transients%20to%20Accelerate%20Cyclic%20Aging%20of%20Lithium%E2%80%90Ion%20Batteries.pdf$$yOpenAccess
001024723 8564_ $$uhttps://juser.fz-juelich.de/record/1024723/files/Batteries%20Supercaps%20-%202023%20-%20Cloos%20-%20Thermal%20Transients%20to%20Accelerate%20Cyclic%20Aging%20of%20Lithium%E2%80%90Ion%20Batteries.gif?subformat=icon$$xicon$$yOpenAccess
001024723 8564_ $$uhttps://juser.fz-juelich.de/record/1024723/files/Batteries%20Supercaps%20-%202023%20-%20Cloos%20-%20Thermal%20Transients%20to%20Accelerate%20Cyclic%20Aging%20of%20Lithium%E2%80%90Ion%20Batteries.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024723 8564_ $$uhttps://juser.fz-juelich.de/record/1024723/files/Batteries%20Supercaps%20-%202023%20-%20Cloos%20-%20Thermal%20Transients%20to%20Accelerate%20Cyclic%20Aging%20of%20Lithium%E2%80%90Ion%20Batteries.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024723 8564_ $$uhttps://juser.fz-juelich.de/record/1024723/files/Batteries%20Supercaps%20-%202023%20-%20Cloos%20-%20Thermal%20Transients%20to%20Accelerate%20Cyclic%20Aging%20of%20Lithium%E2%80%90Ion%20Batteries.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024723 909CO $$ooai:juser.fz-juelich.de:1024723$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b4$$kFZJ
001024723 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024723 9141_ $$y2024
001024723 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001024723 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024723 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-25$$wger
001024723 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001024723 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBATTERIES SUPERCAPS : 2022$$d2025-01-07
001024723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001024723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001024723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001024723 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001024723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001024723 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBATTERIES SUPERCAPS : 2022$$d2025-01-07
001024723 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024723 9801_ $$aFullTexts
001024723 980__ $$ajournal
001024723 980__ $$aVDB
001024723 980__ $$aUNRESTRICTED
001024723 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024723 981__ $$aI:(DE-Juel1)IMD-4-20141217